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Supervisor’s Foreword

DNA replication is arguably the most crucial process in living cells. It is the
mechanism by which organisms pass their genetic information from one genera-
tion to the next, and life on Earth would be unthinkable without it. Recent revo-
lutionary advances in experimental techniques in molecular biology allow the
dynamics of chromosome replication of whole genomes to be investigated with
unprecedented accuracy, resolution and detail. This extraordinary wealth of data
makes it possible to use quantitative and predictive mathematical models to
investigate this crucial biological process. In fact, many of the recent advances in
the field come from multidisciplinary approaches involving applications of mod-
elling to address important biological questions.

This thesis makes important contributions to this line of research. In particular,
it addresses two key questions in the area of DNA replication: what evolutionary
forces drive the positioning of replication origins in the chromosome; and how the
spatial organisation of replication factories observed in many organisms is
achieved. These questions lie at the heart of much of cutting-edge research in the
field, and the application of mathematical modelling described in the thesis yielded
new insights as well as new predictions.

The first part of this work deals with the fundamental problem that locations on
the DNA have to bind with proteins first to become an origin of replication.
However this process is the result of a series of stochastic events, and hence the
probability of a particular location to act as an origin of replication during a
particular round of cell cycle varies; and so does the distance from one eventually
active origin to its nearest neighbour. Some locations have a very high protein-
binding affinity and activate in nearly every cell cycle; some others are less prone
to do so. Many of the previous models on DNA replication however have taken
origin loci and their activation probability as an input parameter, and neglected the
question whether loci positions have been chosen in a manner that depends on the
likelihood of their activation. A naive assumption would be to equally distribute
origins along a chromosome to give cells minimum replication; then every pair of
forks that emerges to either side from an origin travels the same distance until
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it coalesces with another. Here, a mathematical model of replication timing
that encompasses both parameters—origin position as well as origin activation
probability—shows that however sparsely spread groups of origins achieve min-
imum replication time, if their activation probability is low in contrast to an
equally spread out origin distribution. This monograph shows the importance of
origin grouping in nature using a genetic algorithm (that mimics evolution by
giving benefit to those individuals with least required time to replicate their
genome, i.e. those with optimal origin locations). The result particularly relates to
an example of yeast, where origin locations and activation probabilities are known;
where Jens shows that low probability origins are predominantly found grouped
together. He also adds two further examples to the discussion of origin grouping.
One is with regard to early frog embryos, where there is seen variation in the actual
time of origin activation, and the other concerns organisms with multiple origins
on a circular chromosome, which show little grouping behaviour in nature.

The second part culminates in an intuitive explanation for the formation of
replication factories: they result from random encounters of distal replication forks
that are seen to localise together in an energetically preferred state. Conversely,
there is no requirement for an active transport and controlling mechanism to bring
them together, and random association can become achieved simply by means of
diffusion. The herein developed mathematical model takes a set of experimentally
measured association probabilities of neighbouring replication forks in yeast.
These forks have a maximal possible separation from another, which is given by
the length of the piece of DNA that connects them. A fit of the model to data
shows that their probability of association decays as a function of their distance
from another as well as their binding energy. This model then extrapolates well to
the replication factory size distribution of an entire yeast cell, which experimental
collaborators also have measured in vivo. Conclusively, this makes the process
described in this thesis a classic example for developing a physical model of a
biological process that not only produces a fit using known data, but is also able to
correctly produce new predictions.

This work is the result of real cross-disciplinary collaborations between biol-
ogists and physicists, and as a result its findings represent advances in both
physics/applied mathematics and molecular biology. This kind of intrinsically
multidisciplinary research is becoming more and more necessary in the rapidly
evolving field of molecular biology, and this work is a fine example of that.

Aberdeen, May 2014 Dr. Alessandro de Moura
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Abstract

DNA replication is a common feature of life, and proper genome synthesis is
crucial for error-free cell division to occur. Failure in this can be lethal for an
entire generation of cells, or even give rise to cancer. Replication starting points
(origins) play an important role for proper DNA synthesis. It is their distance from
one to another that determines the replication fork travel time, and thus the time
required until synthesis completion. Much of previous theoretical work on how
DNA replication can be faithful neglected how these origins take their place and
how replication time is affected when origins fail to activate. It is however crucial
that origin loci are chosen so that too large gaps between them are avoided;
otherwise the time until completion of chromosome replication becomes much
longer than is allowed by the cell cycle.

We address this lack of knowledge here using mathematical modelling to
describe swift progression through the cell cycle and efficient manners of copying
the DNA. On one hand, the DNA synthesis rate is fixed, and thus the time for
replicating DNA between origins should be too. On the other hand, origin acti-
vation is stochastic which might cause delays in replication completion times. It is
therefore a balancing act to spread out origins in a certain manner to compensate
for variations in activation. We show both analytically and through numerical
simulations that there exist two regimes for origins, either positioned together in
groups spaced far away from the next, or as equally scattered single origins
depending on the uncertainty when activation occurs. We apply the model to
known origin locations in yeast and show that grouping is a means of organisation
driven by evolutionary pressure. The model is able to reproduce origin distribu-
tions of early frog embryos which are thought to be random, and shows contrarily
that grouping must occur in order to swiftly complete replication. The model also
holds when considering a circular DNA topology as for instance archaeal genomes
have, as well as if applied to the whole replication profiling data of yeast.

We also introduce a model to account for the interaction of replication forks
with each other which leads to their assembly into replication factories. For
simplicity, cartoons often depict DNA replication on a straight one-dimensional
line. In fact we deal with a polymer that is packed and modified on different levels
yielding higher order structures of organisation. DNA replication also appears to
be spatially organised within the cellular nucleus. Active replication forks are
experimentally observed to organise in clusters of replication factories. We
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initially investigate these by describing the process with a bead-on-a-string model.
The initial model represents two active pairs of replication forks connected by
DNA. We show using Boltzmann-statistics that their assembly into a factory is
stochastic and matches experimental association probabilities. The model then
extends to describe properties of experimental distributions such as fork numbers
per cluster during the DNA synthesis phase for genome wide yeast replication
data. Our in silico distribution of forks per factory matches in vivo data well;
which suggests that active forks encounter each other randomly for an association
into replication factories.

viii Abstract



Acknowledgments

I would first like to thank my supervisor Alessandro de Moura. I feel very grateful
to him for offering me his guidance, training and support to create and develop my
own ideas. I would also like to thank my co-supervisor Julian Blow for his support,
and thank him for his time, patience and constructive criticism during our dis-
cussions on how to model DNA replication. Most of all I am indebted to both of
my supervisors and the Scottish Universities Life Science Alliance for giving me
the chance to work on a fascinating project. It allowed me to establish further
collaborations and I would like to thank all my collaborators for their experimental
contribution to this thesis, particularly Peter Gillespie, Conrad Nieduszynski,
Nazan Saner, Renata Retkute and Tomo Tanaka.

I would also like to acknowledge the rest of the Physics group at Aberdeen for
their helpful and stimulating discussions, my office-mates Luca Ciandrini and
Kelly Iarosz, my flat-mates Christopher Brackley and Nicolas Rubido-Obrer, my
house-mates Tina and Aaron Schiavone, and not to forget all my other friends
Michael Budnitzki, Thomas Burghagen, Stuart Campbell, Lucas Fernandes, Fiona
Harden, Stefan Heldt, Martin Klauke, Thomas Pfau, Elahe Radmaneshfar, James
Reid, Markus Rehberg, Julia Safier, Marcillio dosSantos, Ulli Seeger…

Finally I would like to thank my parents and my sister, as well as everyone I
forgot to mention here and who have offered me support and encouragement
during my Ph.D. studies.

ix



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The Cell Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 General Principles of the DNA Replication Process . . . . . . . . . . 3
1.3 Aims of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Origin Licensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Origin Firing During DNA Synthesis . . . . . . . . . . . . . . . . . . . . 6
1.6 Replication Timing, Origin Positioning, and the Random

Completion Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Mathematical Modelling of DNA Replication . . . . . . . . . . . . . . 11
1.8 The Spatio-Temporal Organisation of Replication Forks . . . . . . 12
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Optimal Origin Placement for Minimal Replication Time . . . . . . . 19
2.1 Properties of Origins of Replication in Saccharomyces

cerevisiae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 A Mathematical Model for Optimal Origin Positions . . . . . . . . . 26

2.2.1 A Simplified Two Origin Model . . . . . . . . . . . . . . . . . . 26
2.2.2 Many Origin Loci . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.3 Evolutionary Pressure Drives Yeast Origin Loci

to Optimal Positions . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.4 Loci Competence and Circular Chromosomes . . . . . . . . 33

2.3 Optimal Origin Loci and Stochasticity in Origin
Activation Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Actively Replicating Domains Randomly Associate
into Replication Factories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1 Summary of Experimental Procedure . . . . . . . . . . . . . . . . . . . . 51
3.2 The Diffusion Time Scale of Two Replicating Dots . . . . . . . . . 53

xi

http://dx.doi.org/10.1007/978-3-319-08861-7_1
http://dx.doi.org/10.1007/978-3-319-08861-7_1
http://dx.doi.org/10.1007/978-3-319-08861-7_1#Sec1
http://dx.doi.org/10.1007/978-3-319-08861-7_1#Sec1
http://dx.doi.org/10.1007/978-3-319-08861-7_1#Sec2
http://dx.doi.org/10.1007/978-3-319-08861-7_1#Sec2
http://dx.doi.org/10.1007/978-3-319-08861-7_1#Sec3
http://dx.doi.org/10.1007/978-3-319-08861-7_1#Sec3
http://dx.doi.org/10.1007/978-3-319-08861-7_1#Sec4
http://dx.doi.org/10.1007/978-3-319-08861-7_1#Sec4
http://dx.doi.org/10.1007/978-3-319-08861-7_1#Sec5
http://dx.doi.org/10.1007/978-3-319-08861-7_1#Sec5
http://dx.doi.org/10.1007/978-3-319-08861-7_1#Sec6
http://dx.doi.org/10.1007/978-3-319-08861-7_1#Sec6
http://dx.doi.org/10.1007/978-3-319-08861-7_1#Sec6
http://dx.doi.org/10.1007/978-3-319-08861-7_1#Sec7
http://dx.doi.org/10.1007/978-3-319-08861-7_1#Sec7
http://dx.doi.org/10.1007/978-3-319-08861-7_1#Sec8
http://dx.doi.org/10.1007/978-3-319-08861-7_1#Sec8
http://dx.doi.org/10.1007/978-3-319-08861-7_1#Bib1
http://dx.doi.org/10.1007/978-3-319-08861-7_2
http://dx.doi.org/10.1007/978-3-319-08861-7_2
http://dx.doi.org/10.1007/978-3-319-08861-7_2#Sec2
http://dx.doi.org/10.1007/978-3-319-08861-7_2#Sec2
http://dx.doi.org/10.1007/978-3-319-08861-7_2#Sec2
http://dx.doi.org/10.1007/978-3-319-08861-7_2#Sec3
http://dx.doi.org/10.1007/978-3-319-08861-7_2#Sec3
http://dx.doi.org/10.1007/978-3-319-08861-7_2#Sec4
http://dx.doi.org/10.1007/978-3-319-08861-7_2#Sec4
http://dx.doi.org/10.1007/978-3-319-08861-7_2#Sec5
http://dx.doi.org/10.1007/978-3-319-08861-7_2#Sec5
http://dx.doi.org/10.1007/978-3-319-08861-7_2#Sec6
http://dx.doi.org/10.1007/978-3-319-08861-7_2#Sec6
http://dx.doi.org/10.1007/978-3-319-08861-7_2#Sec6
http://dx.doi.org/10.1007/978-3-319-08861-7_2#Sec7
http://dx.doi.org/10.1007/978-3-319-08861-7_2#Sec7
http://dx.doi.org/10.1007/978-3-319-08861-7_2#Sec10
http://dx.doi.org/10.1007/978-3-319-08861-7_2#Sec10
http://dx.doi.org/10.1007/978-3-319-08861-7_2#Sec10
http://dx.doi.org/10.1007/978-3-319-08861-7_2#Sec11
http://dx.doi.org/10.1007/978-3-319-08861-7_2#Sec11
http://dx.doi.org/10.1007/978-3-319-08861-7_2#Bib1
http://dx.doi.org/10.1007/978-3-319-08861-7_3
http://dx.doi.org/10.1007/978-3-319-08861-7_3
http://dx.doi.org/10.1007/978-3-319-08861-7_3
http://dx.doi.org/10.1007/978-3-319-08861-7_3#Sec2
http://dx.doi.org/10.1007/978-3-319-08861-7_3#Sec2
http://dx.doi.org/10.1007/978-3-319-08861-7_3#Sec3
http://dx.doi.org/10.1007/978-3-319-08861-7_3#Sec3


3.3 Binding Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4 Test of the Analytical Result Versus Computer

Simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5 Fit to Experimental Data of Replisome Association . . . . . . . . . . 63
3.6 Genome-Wide Replication Data and the Number of Forks

Per Factory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xii Contents

http://dx.doi.org/10.1007/978-3-319-08861-7_3#Sec4
http://dx.doi.org/10.1007/978-3-319-08861-7_3#Sec4
http://dx.doi.org/10.1007/978-3-319-08861-7_3#Sec5
http://dx.doi.org/10.1007/978-3-319-08861-7_3#Sec5
http://dx.doi.org/10.1007/978-3-319-08861-7_3#Sec5
http://dx.doi.org/10.1007/978-3-319-08861-7_3#Sec6
http://dx.doi.org/10.1007/978-3-319-08861-7_3#Sec6
http://dx.doi.org/10.1007/978-3-319-08861-7_3#Sec7
http://dx.doi.org/10.1007/978-3-319-08861-7_3#Sec7
http://dx.doi.org/10.1007/978-3-319-08861-7_3#Sec7
http://dx.doi.org/10.1007/978-3-319-08861-7_3#Sec8
http://dx.doi.org/10.1007/978-3-319-08861-7_3#Sec8
http://dx.doi.org/10.1007/978-3-319-08861-7_3#Bib1
http://dx.doi.org/10.1007/978-3-319-08861-7_4
http://dx.doi.org/10.1007/978-3-319-08861-7_4


List of Publications

I list here publications that have arisen from this work.

J. Karschau, J. J. Blow, A. P. S. de Moura Optimal placement of origins for
DNA replication. Physical Review Letters, 108(5):058101 (2012).

N. Saner, J. Karschau, T. Natsume, M. Gierlinski, R. Retkute, M. Hawkins, C.
A. Nieduszynski, J. J. Blow, A. P. S. de Moura, T. Tanaka Stochastic
association of neighboring replicons creates replication factories in budding yeast.
Journal of Cell Biology, 202(7):1001–1012 (2013).

A further publication, other than those described herein, is.

J. Karschau, C. de Almeida, M. C. Richard, S. Miller, I. R. Booth, C. Grebogi,
A. P. S. de Moura A matter of life or death: modeling DNA damage and repair in
bacteria. Biophysical Journal, 100(4):814–821 (2013).

xiii



Chapter 1
Introduction

To accomplish their numerous tasks cells must create and control an internal (spatial
and temporal) order of processes by properly organising their resources. One of
these processes—arguably themost crucial process of all—isDNA replicationwhose
mechanisms appear to rely on random events. At first, this seems counter-intuitive as
one would expect tremendous fluctuations in the time it takes cells to duplicate, but
this is not the case:most cells have awell-timed cell cycle, and this is necessary if they
are to have consistent growth rate and generation times. DNA acts as the blueprint of
the entire protein machinery and cellular architecture, and its integrity when passed
on from mother to daughter cells is therefore of particular importance. Diseases are
a common consequence of replication failure, which can lead to embryonic death,
cell apoptosis, or abnormal cell growth. This has the potential to imbalance tissue
growth leading to malignant tumour growth—making replication failure one of the
most common causes of cancer. In order to understand how such failure arises it is
necessary to first comprehend how robust (precisely timed) DNA replication occurs
under normal and healthy circumstances. Although the structure of the DNA has
been known for over 50 years we still lack complete understanding of all facets of
DNA replication. The aim of the work presented in this thesis is to address the lack
of knowledge in this area using mathematical modelling, and to ultimately further
our fight against diseases such as cancer.

1.1 The Cell Cycle

DNA replication occurs inside the nucleus of eukaryotic cells. Unlike bacteria, that
do not have compartmental structures like the cellular nucleus and that can have
concurrent rounds of DNA replication, DNA replication in eukaryotes is subject to a
strict timing regime. This is the cell cycle, and it sets the time line of events in the life
of a cell. Figure1.1a depicts a typical cell cycle as we find it in most animal, human
and yeast cells. It contains 4 phases, one of these is the mitosis phase (M-phase)
where cells divide and produce offspring. Two further phases of the cell cycle are

© Springer International Publishing Switzerland 2015
J. Karschau,Mathematical Modelling of Chromosome Replication and Replicative Stress,
Springer Theses, DOI 10.1007/978-3-319-08861-7_1
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2 1 Introduction

+

+
(a) (b)

Fig. 1.1 The eukaryotic cell cycle. a The cell cycle of most eukaryotic organisms such as Saccha-
romyces cerevisiae contains four phases. Cell division occurs duringM-phase, origin licensing dur-
ing G1-phase, DNA synthesis during S-phase, and cells grow and prepare for division in G2-phase.
b Early Xenopus laevis embryos have an abbreviated cell cycle which only consists of M-phase
(during which the cells divide and origin licensing follows), and S-phase (during which the DNA
is copied). Once fertilised, zygotes—eggs fused with spermii—begin replicating and dividing for
12 rounds each lasting 25 min. During this time cells only double their genome and then divide
without going through G1- and G2-phase

G1 and G2 phase which are also often called gap phases as they sit in between the
DNA synthesis phase (S-phase) and M-phase. Their role during the cell cycle is
to either prepare the cell for DNA replication (G1-phase) or to give the cell time to
grow and prepare for division into two daughter cells (G2-phase). The transition from
one phase to another is regulated by biochemical agents called cyclines and cycline
dependent kinases [1] which govern the timing of events in a cell. Their levels can
be biochemically measured which can hint which cell cycle phase is currently active
at a particular point during an observation of cells. There is an ever-growing body of
also theoretical works that try to model cell cycle events using for example signalling
networks or sets of ordinary differential equations. We invite the interested reader
to explore the work by Radmaneshfar [2] for further information on modelling cell
cycle as well as the consequences of stresses when exerted on a cell—particularly
for the case of varying osmotic pressure.



1.2 General Principles of the DNA Replication Process 3

(a) (b)

Fig. 1.2 DNA replication consists of two separate phases. a During the licensing phase origin-
forming proteins bind to the DNA (orange ovals). b During the later synthesis phase, these origins
become activated (indicated by star). From an activated origin replication forks emerge from either
side of it (blue arrows) synthesising the DNA. Origins which have yet to become activated become
unlicensed once DNA in this region has been replicated (hollow ovals). Their activation is then
impossible

1.2 General Principles of the DNA Replication Process

Several mechanisms, the complexity of which is not yet fully understood, work
to ensure that the DNA is properly copied—in its entirety—prior to cell division.
A temporal separation of processes avoids multiple copies of DNA: the loading of
inactive proteins onto potential replication initiation sites (origins) occurs only during
a distinct phase of the cell cycle before actual origin activation [3, 4] (cf. Fig. 1.2a).
The activation of licensed origins occurs in another phase when bidirectional forks
emerge from origins (Fig. 1.2a). Depending on the organism the timing of these two
phases can differ. For example, the yeast Saccharomyces cerevisiae has a cell cycle
consisting of four phases (Fig. 1.1a), only two of which have relevance for DNA
replication (G1 and S-phase); it takes about 90min to complete one round of the
cell cycle. In contrast, early Xenopus laevis frog embryos have a shorter cell cycle
consisting only of those DNA replication relevant phases (as shown in Fig. 1.1b),
and completion of their cycle is within 25 min.

The first stage of DNA replication is often referred to as licensing (Fig. 1.2a);
this is where various proteins bind to the DNA at the origin sites. Depending on the
organism, licensing can be at random or sequence specific DNA positions [5], and
although the licensing components are known to assemble into the pre replication
complex (preRC), details of the interaction amongst the components is not yet fully
understood. The current model suggests that proteins find their licensing binding
site via diffusion, i.e. it is a stochastic process. Recently, it has also been shown that
the choice of licensed origin sites in higher organisms varies from tissue to tissue or
from one embryonal stage of development to another [6–8]. Another study suggests
that changes to several limiting factors could lead to a prolonging of the replication
time [9]; this also fits with another model where the cell cycle slows down during
the mid-blastula transition in embryonal development [10]. Despite these advances,
that work does not explain how the positions of the cohort of origins are chosen, and
crucially how this results in a consistent timing for replication.



4 1 Introduction

It is puzzling how this collection of stochastic processes in DNA replication can
still yield reproducible timing, that is aligned with the cell cycle. Specifically, origins
in Xenopus laevis appear to take random places and it is currently unknown how a
random placement can give reliable replication completion times; this is the so called
random completion or random gapproblem [5, 11]. Besides the placement of origins,
dynamic processes such as replication fork progression or stall (pausing due, e.g. to
DNA damage) have also been shown to impact replication timing. For example,
fork movement also plays some role in replication timing such as consequences of
asymmetries in forks progressing either in a 3′→5′ or 5′→3′ direction [12], as well
as does the DNA sequence appear to shape genomic positions which eventually leads
to preferred origin locations, i.e. so termed timing domains [12–14].

Specifically, proper origin spacing is necessary because after licensing there is no
further opportunity to lay out more origins once DNA synthesis begins. If origin sites
are too far apart, replication fails and genomic information is lost because cells would
divide before all DNA has been copied. Origin activation itself is also a stochastic
process. So not only must the origins be sufficiently closely located, one needs them
to be sufficiently closely loaded in the right ratio—active to inactive ones—without
protein and energy resources being wasted. It has been suggested that particular
higher order DNAmodifications, for example DNAmethylation (epigenetic factors)
or histone modifications can hinder licensing and are sources of timing variation
[15, 16].

1.3 Aims of This Thesis

The purpose of the work presented here is to resolve current questions surrounding
the effects of noise in DNA replication. This will aid in solving problems such
as the random completion problem and how replication forks interact inside the
nucleus. This thesis elucidates three key elements centred around these problems
using physical modelling. Specifically, these chief questions here are:

1. Why are origins located where they are? We consider Saccharomyces cerevisiae,
where origin locations are encoded in the sequence and ask what are the opti-
mal origin positions given noisy conditions during origin licensing and origin
activation.

2. How should origins in Xenopus laevis be positioned to give minimum replication
time?

3. Is there an interaction between replication forks? How do they interact with each
other inside the cellular nucleus?

Answering these questions will further our understanding of the DNA replication
process as a whole. Within the bigger picture this will help to identify particular
targets within the DNA replication mechanisms which can be used to attack or avoid
cancer.
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(a)

(b)

(f)

(e)

(d)

(c)

Fig. 1.3 Schematic representation of the steps involved in origin licensing. Not yet bound proteins
are marked by their names, DNA-bound proteins are only marked with their symbols. a ORC binds
to DNAwhich then recruits Cdc6 (b) and Cdt1 (c). These reactions are reversible. d In the final step,
Mcm2-7 irreversibly binds as a double-hexamer. e This releases the previously bound components
ORC, Cdc6 and Cdt1. Mcm2-7 remains irreversibly bound to DNA and forms the pre-replicative
complex (preRC) in (f). This one can become active during S-phase as an origin of replication

1.4 Origin Licensing

As mentioned above, prior to the synthesis of DNA, replication starting points
(origins of replication) are established at certain genomic locations (origin loci).
This process is named origin licensing, and the fact that it is temporally separated
from the DNA synthesis process means that DNA which has already been replicated
does not become re-replicated.

Licensing consists of a sequential docking of proteins onto origin loci. The com-
ponents have been found to be involved in a four-stepmechanism as shown in Fig. 1.3.
First a protein called the origin-recognition complex (ORC) binds toDNA (Fig. 1.3a).
This is followed by the binding of two further scaffolding proteins called Cdc6 and
Cdt1 that bind sequentially as depicted in Fig. 1.3b and c. Finally, the minichromo-
some maintenance complex (Mcm) consisting of several individual Mcm2-7 pro-
teins is recruited to form the so-called pre-replication complex (preRC) (Fig. 1.3d),
and triggers the release of ORC, Cdc6 and Cdt1 (Fig. 1.3e). However at this stage
the preRC is still inactive and it shall remain inactive until the licensing phase is
completed. Recent studies have shown that Mcm2-7 binds in the form of a pairwise
hexamer (pMcm) [17, 18], i.e. there are always twoMcm2-7 complexes bound back-
to-back with DNA [19] as shown in Fig. 1.3e and f. This suggests that Mcm2-7 is a
driving force in processing the DNA during synthesis, and in fact it was shown that
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Mcm2-7 acts as a helicasewhich unwinds theDNA [20–23], allowing the polymerase
to access and copy it. So Mcm2-7 has an integral role in the replication machinery.

The way in which origin loci—those not yet licensed sites—are chosen differs
depending on the organism or the tissue being studied. In this work we mainly
focus on two systems, namely the yeast Saccharomyces cerevisiae, and the early
embryos of the frogXenopus laevis. It is well accepted that the yeast has signatures of
specific origin loci encoded into its genomic sequence which ORC recognises. These
have been termed Autonomously Replicating Sequences (ARS) [24, 25], and are
distributed in distinctive 11 basepairs (bp) long DNA sequence specific motifs [26].
In contrast, in Xenopus laevis such clear and distinctive loci for ORC-binding do not
exist, and ORC can bind anywhere on the chromosome [27, 28]. Both organisms,
Saccharomyces cerevisiae andXenopus laevis are goodmodel systems for helping us
to understand the organisation of licensing inman.Having these twomodel organisms
allows us to study each mode of licensing—random locations and specific origin
location—in isolation. Organisation of licensing in man does not seem as clear as in
either Saccharomyces cerevisiae or Xenopus laevis. For example, a study finds that
there are human genomic regions with sequence specific origin loci (as is the case for
Saccharomyces cerevisiae) and there are also DNA segments in which there are no
clear origin loci, and licensing appears to occur randomly (as is in the early Xenopus
laevis embryo) [27]. Another investigation by Besnard et al. [29] showed that there
exist a consensus guanine sequence (G-quadruplexes) which acts as a signature for
origins of replication in man. G-quadruplexes consist of four guanine bases that
become stacked in a way so that they form higher order structures amongst them.
Yet more recently unpublished data by the Arneodo group suggests that epigenetic
factors and histone-binding proteins such as H2A variants open up regions along the
chromosomewhere origins can form (personal communication with Alain Arneodo).
The inter-play of the accessibility of DNA with licensing has also been suggested
previously in studies of DNA sequences which showed a jump in the ratio of its
guanine and cytosine bases amongst leading and lagging strand DNA [30], which
can act as DNA break point or as sites where origins of replication are established.

Origin licensing ends with a down-regulation of further assembly of proteins at
origins [31]. The current model suggests that a degradation of the licensing factors in
the cell nucleus can achieve this [32–34]; a further route to down-regulation is through
blocking of the scaffolding proteins, i.e. the intermediate proteins which recruit the
Mcm2-7 to form licensed origins. For example the protein Geminin blocks licensing
by binding to Cdt1 preventing it from binding with an ORC-Cdc6 complex on the
DNA, and ultimately inhibiting the recruitment of Mcm2-7 [35].

1.5 Origin Firing During DNA Synthesis

Once licensing completes, the cell cycle progresses to its next phase, where origin
activation and the replication of DNA occurs. It is therefore called the synthesis or
S-phase. The origins which were licensed during the previous phase lie dormant
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Fig. 1.4 The main components of a replication fork are a topoisomerase, a helicase (Mcm2-7),
a polymerase (pol δ/α), as well as further accessory proteins, e.g. Cdc45 and the GINS complex.
Polymerase can only act in the 3′→5′ direction. Thus it works continously in that direction on the
leading strand, but forms Okazaki fragments on the lagging strand, which then require ligation and
maturation through the ligase and FEN-1 proteins. This image is an adaption of [39]

(inactive) for some period of time until they become activated. Activation requires
the binding of further proteins until the full replication machinery has assembled.
In replication terminology one refers to this machinery as replication forks; they
operate bi-directionally, meaning that forks emerge from either side of the origin
with its machinery at their head, as shown in Fig. 1.4. The figure also shows that
the polymerase (the DNA-copying element of the fork) only acts in one direction,
namely in the 5′ to 3′ direction. So when replication forks progress, one strand, the
leading strand, is copied continuously as the forks move in 3′→5′ direction; the
other is synthesised discontinuously, i.e. polymerases replicate a section of DNA
in the 3′→5′ direction, and then jumps back in the 5′→3′ direction to replicate the
next section. Such discontinuity creates intermediate fragments on the lagging strand
called Okazaki fragments which require post-processing (maturation) to join them
together (ligate) to form one continuous DNA strand.

The protein machinery of a replication fork consists of the following main com-
ponents [36]:

• a helicase that unwinds and opens up the DNA, i.e. Mcm2-7,
• a polymerase which copies template DNA, e.g. a polymerase on the leading and
another on the lagging strand.

• accessory proteins such as processivity factors that clamp polymerase tightly and
prevents it from dissociating, i.e. PCNA,

• nucleases such as FEN-1 that cleave and prepares DNA for later Okazaki fragment
ligation,

• further proteins for example DNA ligase I which joins Okazaki fragments or
topoisomerase that unlinks parental strands,

• initiator proteins which are involved in the activation of the replication machinery
and its progression [19, 37, 38]: Cdc45 and the GINS proteins.
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(a)
(b)

Fig. 1.5 Replication bubbles. a Replication starts from origins of replication shown as oval shapes
(top figure). Once an origin activates replication bubbles form which carry newly synthesised DNA
inside of them shown in red. The active origins sites are marked as small blue circles on either
replicated DNA strand, not yet activated origins loose their ability to activate once a replication fork
moves across them (hollow ovals). Replication finisheswhen forks reach the end of a chromosome or
coalesce with another fork which originated elsewhere. b Electron micrograph image of replication
bubbles in Drosophila melanogaster. This image was acquired from Fig. 2 from the original paper
by Kriegstein and Hogness [41] who gave their kind permission to reprint it

As the proteinmachinery of a forkmoves along theDNA, it leaves duplicatedDNA
in its wake, resulting in replication bubbles, as shown in Fig. 1.5. Replication forks
flank the bubbles at either side, and a bubble carries newly synthesised DNA inside it.
By comparing bubbles to linear DNA, i.e. not yet replicated DNA, one can infer the
position of an origin of replication. Assuming furthermore at a constant speed this
should be the midpoint of bubble. What can be gleaned from the study of replication
bubbles is whether an origin was activated early or later during S-phase. For example,
a large bubble suggests that forks have had longer tomove further away froman origin
at its centre, compared to a smaller replication bubble where replication might have
only just started. However such information can also be ambiguous, because a large
bubble could also be the result of the merging of two smaller bubbles. One way
of visualising newly synthesised DNA uses two differently labelled nucleotides in
the cellular growth medium. Their addition at different times to the medium during
replication highlights some of the dynamics during replication [40]. For instance
two differently labelled nucleotides can be added one at a time during replication.
This will result in patterns on the DNA where those replicated from one labelled
nucleotide will have one particular colour. This then aids in the identification of
origin positions similar to studying the length of a replication bubble. The method
also allows to distinguish between an early or late origin depending on the colour-
coding of a replicated DNA stretch.

Localising origins of replication, as well as forks, is also possible using sequenc-
ing techniques (e.g. oligonucleotide microarrays [42], ChIP-chip sequencing [43],
deep sequencing [44]) to examine DNA extracted from the cell during different times
of the S-phase. These approaches use a set of known DNA snippets that hybridise
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Fig. 1.6 A schematic representation of a replication timing profile is shown for the case of four
origins (hollow circles). We assume this is how forks move if we observe a single cell. Origins are
located at different positions x along the a chromosome. Origins activate at different times t and
their forks progress from either side of the origin (solid line), until they encounter another fork or
reach the end of the chromosome. Termination points are shown as filled circles

(are matched) with the sample DNA. Quantifying the extent of matches then relates
back to the known DNA segment sequence and the marker at the time the sam-
ple was taken. For example, the study by Raghuraman et al. [42] labels replicated
DNAwith heavy isotopes. Doing this they can then sort replicated from unreplicated
DNA and identify the corresponding known DNA sequence belonging to it. Sekedat
et al. [43] make use of a different marker and they mark key proteins on the DNA
during replication. They label a fork component (the GINS complex), and sort the
DNA pieces that bound to it. They then determine the corresponding DNA sequence
where the GINS complex sits and therefore location of replication forks over time.
Samples taken at different times during DNA replication resolve fork movement spa-
tially as well as temporally. The data produces replication timing profiles and these
space-time plots reveal which origins activate when, when do forks merge, as well as
which piece of DNA was replicated at which point in time during S-phase. A sketch
of such a timing profile is shown in Fig. 1.6 for the case of four origins activating at
different times when we observe this in a single cell.

When replication forks move along the DNA they might encounter a dormant
origin, as is shown in the second last sequence of Fig. 1.5 (see also Fig. 1.2b). Since
a dormant origin is inactive, it then becomes passively replicated [45] meaning that
it loses its ability to act as a replication starting point. From there, replication then
continues normally along the remaining stretch of DNA.Whenever a replication fork
collides head-on with another fork, replication terminates at this point and the open
ends of newly replicated DNA become ligated. Replication also terminates if a fork
reaches the end of a chromosome. A replication fork might also stall, as a result of,
for example, damaged DNA sites; in this case dormant origins play an important
role. Their presence allows replication to restart from outside a stalled region, and
they contribute not only to keep replication going, they also contribute in a manner
to keep replication on-time [46]. Activating dormant origins helps to repartition not
yet replicated DNA into smaller pieces which will reduce the overall replication
completion time—the time the last segment of DNA takes to be fully replicated.
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One particular drawback of most experimental procedures is that measurements
usually observe a population average of cells (or origins). For example, experiments
are normally carried out using synchronised cell cultures, so the onset of replication
can be timed. However there is stochasticity in origin licensing and activation which
then averages out some aspects of origins, e.g. probability of becoming licensed,
the exact activation time. This makes it difficult to detect origins which have little
probability to activate in a given round of cell cycle. For this single cell data is
required and hard to come by, so one requires a theoretical approach as well as in
silico models for a complete resolution of all facets of origins during licensing and
during their activation in S-phase.

1.6 Replication Timing, Origin Positioning, and the Random
Completion Problem

Replication timing and the timing of cellular division are strongly interlinked since
cells would lose genomic information if they divided prior to the completion of
replication. Previous research in theXenopus laevis early embryo system showed that
after fertilisation egg cells double at a constant speed for the first twelve rounds [10].
The time between divisions is ∼25min which is comparably short to a 24 hour-long
division cycle of most differentiated, somatic cells. However the genomic content
of both cell types is the same, i.e. an information content of 6.2 · 109 bp (about the
same magnitude as for humans).

There are several points that form a conundrum of how such rapid doubling within
25min can be achieved in the early frog embryo system. The speed at which repli-
cation forks process the DNA in eukaryotes is apparently fixed at about 1kbp/min
with its exact value depending on the specific organism, e.g. 1.5kbp/min in Sac-
charomyces cerevisiae [42, 43] and 0.5–0.6kbp/min in Xenopus laevis [47]. As a
consequence of Xenopus laevis early embryos undergoing cellular division within
25min, the distance from one origin to the next must be no larger than ∼20kbp
to achieve this. However DNA saturates at approximately one Mcm2-7 per 1.5 to
3kbp [19, 48] which means that there are about 200,000 origins from which replica-
tion starts in every cell cycle. Keeping inmind that inXenopus laevis embryos origins
can assemble at any given DNA sequence, then a random distribution of origin sites
of this extent juxtaposed with the possibility to lay them out along 6.2 ·109 bp results
in a high probability of having at least one gap >20kbp [5, 11]1; which would pro-
long S-phase and retard the cell cycle. However experiments show that this is not
the case, moreover origins appear to have a bias towards a regular spacing with one

1 The maximal gap allowed to complete replication on time is given by 20min/(2 · 0.5 kb/min) =
20 kbp. This is if we consider that all origins activate at the same time under the conditions of two
forks replicating each at 0.5kb/min for a period of 20min.
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origin every 5–15kbp [11]. This conundrum has therefore been termed the random
completion problem and also random gap problem which to-date has not been fully
resolved [49, 50].

1.7 Mathematical Modelling of DNA Replication

Within the school of mathematical modelling of DNA replication there are two
views on the importance of licensing-defined origin sites [50]. Whether or not to
include licensing in a modelling approach is of special importance to resolve the
aforementioned random completion problem.

In the first view, origins can literally form anywhere, andmodelling of the replica-
tion process depends only on an initiation function. It governs the amount of origins
that activate at a particular time in not yet replicated DNA regions [51, 52], and
it thus acts as a rate of origin activation over time. The essence of this approach
is a one-dimensional nucleation and growth model which holds a long-history and
myriad applications [53] in the statistical physics realms known as the Kolmogorov-
Johnson-Mehl-Avrami (KJMA) model [54]. The KJMA model considers random
nucleation events along a one-dimensional line whose rate of nucleation depends on
the particulars of the initiation function. From each nucleation point the line under-
goes a transition (e.g. from unreplicated to replicated) at some speed to either side
from it. The elegance of the KJMA model is its direct provision for analogy to the
replication mechanism: nucleation points are origins of replication, transformation
of DNA acts as changing DNA from an unreplicated to a replicated state [54] (cf. also
Fig. 1.2b). However this approach falls short of biological details; it mainly addresses
the question of how cells are able to replicate their genome in a short time lacking the
relationship between the stochasticity of the location of origin and their activation
times [13, 51, 54, 55]. The KJMA model of DNA replication works only properly
(works out the random completion problem) if the initiation rate increases towards the
end of S-phase [56–58]. However an increasing initiation rate requires an arbitrary
amount of origins to be licensed which lacks the known biological model of Xenopus
laevis embryos. In other words the KJMA model always requires the potential pres-
ence of a licensed origin at every arbitrary position to allow for random initiation.
However there is only a finite amount of origins loaded during licensing [59], and
once licensing completes the origin positions are fixed. The KJMA model is there-
fore incomplete and lacks a full explanation for a solution to the random completion
problem from a licensing point of view.

Despite this shortcoming of explaining the origin positions, applying the pioneer-
ing KJMAmodel to Saccharomyces cerevisiae replication profiles yields insight into
the likelihood of their known location to act as an origin [60]. One can hence use
this model to extract the probability of an origin locus to contribute in a particular
round of the cell cycle, i.e. its efficiency [13]. There exist also several other mod-
elling approaches to extract information by also taking into account several cell cycle
progression regulators [61, 62].
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The second view of modelling DNA replication, considers two ingredients for
a possible model. It divides the entire process into two separate phases as are in
biology—licensing and activation—because an origin can only activate if it was
previously licensed. For example Moura et al. developed a model in such a way,
and as a result they require extra parameters [63] compared to the KJMA model.
In their scenario, an origin locus has a probability to actually become licensed or
not. It is therefore considered to have certain competence to activate later for DNA
synthesis. During S-phase the licensed origin has a further probability attached to it to
becomeactivated over time.The authors achieve this by introducing a time-dependent
activation distribution [64, 65] which is defined bymean activation time and standard
deviation per origin. Such model can then be fitted to Saccharomyces cerevisiae
experimental replication timing profile data to extract these relevant parameters as
well as describing an origins’ overall efficiency as was in the aforementioned KJMA
modelling approach.There have also been further approaches [66, 67]which consider
such separation of phases for DNA replication as well as linking them to players
of the cell cycle for a holistic model of a population of yeast cells. As modelling
separated into licensing and origin activation results in a more realistic approach,
we will investigate in Chap.2 what the best origin positions are; whether those give
minimum replication time according to their parameters. We then reverse engineer
the optimal origin positions by simulating an evolutionary process and find that
origins take positions so that replication completes quickly.

1.8 The Spatio-Temporal Organisation of Replication Forks

A typical eukaryotic chromosome has a length of 2·108 bp and it is contained within
the nucleus of a typical eukaryotic cell. It would be about 6cm [68] long, if it were
fully stretched out. So this is much longer than the actually size of a cell or even its
nucleuswhere chromosomes are located.DNAmust thus be packaged and compacted
to fit into the cellular nucleus, and it is known that this occurs at different scales [1], for
example DNA is wound around histones forming chromatin, chromatin condenses
further to form chromosomes. Chromatin as well as chromatin organisation occur in
three spatial dimensions which has been of long-standing interest by experimental
and theoretical groups alike and is also of particular interest in polymer science (as
reviewed in [69]). It is hypothesised that chromatin organisation also plays a role
in the activation or down-regulation of a particular gene by compacting the DNA
sequence of a protein and shielding it from transcription factors that try to bind with
it [1]. DNA is thus much more active than the usually projected picture which only
sees it as a sole means to encode for information.

When DNA condenses particular genomic regions come into contact with another
which, if they were stretched out linearly in 1D would be otherwise far away from
each other. For example, Duan et al. [70] suggested that packaging DNA inside the
nucleus creates higher order structures that organise into regions inside the nucleus.
They further suggest that localisation organises the DNA into structures which aid

http://dx.doi.org/10.1007/978-3-319-08861-7_2
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Fig. 1.7 A replisome pair. Active replication forks (blue ovals) synthesise unreplicatedDNA (black
line) by pulling it through them from one side and ejecting the newly synthesised DNA (yellow)
on the other. In doing this sister replisomes, i.e. the active replication forks, move away from their
origin of replication (white circle), but always stay attachedwith each other. Not yet activated origins
which are shown as two green ovals to represent DNA-bound Mcm2-7 double hexamers waiting to
become activated

in accessing a particular gene or help during replication. Boulos et al. also suggested
such functional dependency of intra- and inter-chromosomal interaction during their
network analysis of human chromatin regions which have potential to play a role
in DNA replication. Previous to these theoretical works there has also been con-
vincing experimental evidence for a spatial organisation of DNA during replication
(and mRNA transcription) into compartment-like structures that have no physical
boundaries; these observations are termed replication factories [71]. It is currently
unresolved how these structures form and stay together despite no clear compart-
ment wall. Work by Cisse et al. [72] suggests their formation to be more dynamic,
and assembly and disassembly transiently occur with an average life-time of 5 s of
equivalent structure called transcription factories, i.e. where DNA is copied into
messenger RNA. Data we use for our analysis of replication factories in Chap. 3 also
displays dynamic rates of close localisation and dislocation of unreplicated DNA
regions with each other, however once DNA becomes replicated movement of these
regions becomes constrained (see also [73]) that we interpret as a strong interaction
between nearby replicating DNA regions. A possible difference in the organisation
of replication and transcription is that transcription only acts on one DNA strand
whereas during DNA replication both strands become duplicated simultaneously
which might require a stronger force to keep the replication machinery associated.

The models of replication kinetics which are discussed in the previous Sect. 1.7
considered DNA replication to happen spatially in only one dimension: replication
forks move away to either side from an origin. Experiments however suggest that in
a three dimensional space of a nucleus replication forks nucleated from one origin
stay bound together as sister replisomes [74–76]. Sister replisomes are sketched in
Fig. 1.7. They spool unreplicated DNA from one side and then spool out replicated
DNA to the other. The replisome pairs stay associated for the course of replication of
a DNA segment, but more importantly they were also shown to group together with
other replisomes eventually forming replication factories [75, 77, 78]—regions with
a high fork content. A proposed function for factories is that there is a high pool of

http://dx.doi.org/10.1007/978-3-319-08861-7_3
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essential proteins required for DNA synthesis localised around them [79]. This can
aid to, for example, activate dormant origins under replicative stress such as DNA
damage [80–82], and when there is a large amount of origins required to activate
quickly. To-date, it is not clear what keeps these factories together, however previous
modelling shows that an energy barrier must be overcome to bear the entropic cost
from forming DNA loops to have factory structures [83–85].

We address this lack of knowledge in Chap. 3. Using Boltzmann statistics and
numerical simulations we show that replisomes randomly associate with each other
on a chromosome. We establish a model for two sister replisomes to pair and then
extend ourmodel to account for replisomes associating on a genome-wide scale. This
model is firmly grounded at the core biological question and supplements experi-
mental data of the probability of observing associations in vivo in Saccharomyces
cerevisiae cells.
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Chapter 2
Optimal Origin Placement for Minimal
Replication Time

Eukaryotic genomes vary in their size and are much larger than their bacterial
counterpart, e.g. that of Saccharomyces cerevisiae is ∼107 bp long, those of Xeno-
pus laevis or humans are ∼109 bp in length, whereas Escherichia coli is ∼106 bp.
Bacteria also only have one single origin locus of replication from which they start
replication, with each fork propagating at ∼4kbp/min [1, 2]; this allows for replica-
tion completion in under 40min. Eukaryotic replication forks however exhibit amuch
slower characteristic speed, and experimental data shows that the speed of synthesis is
∼1.5kbp/(min·fork) [3, 4] in Saccharomyces cerevisiae and at ∼0.6kbp/(min·fork)
in early Xenopus laevis frog embryos [5]. Let us then consider the time required for
Saccharomyces cerevisiae DNA replication here if there were only one single origin
of replication: it would take Saccharomyces cerevisiae almost three days to complete
its genome replication.1 In a laboratory environment yeast completes replication of
its entire genome in less than about 30min [6, 7], more than 100 times faster than
what we calculated—it is clearly not the case that there is only one of replication.

The time until replication completion is accelerated by partitioning the chromo-
some into smaller replication domains; each of these requires an origin of replication
that has formed at an origin locus. Origin loci therefore need to be placed in a man-
ner such that replication time is minimal, i.e. replication completes by the end of
S-phase. An initial guess is to space origin loci at regular intervals across a chromo-
some (Fig. 2.1a), if we assume origins always become licensed and activate at the
same time. Such a scenario is the optimal case to result in quickest replication as
compared to having the same number of origins sparsely spaced but instead groups
(Fig. 2.1). Within a group only one origin is able to become active which then means
that replication forks must travel farther prolonging the overall replication process
(Fig. 2.1b). Therefore grouping seems to be a waste of origin resources. However we
do show in this chapter that grouping is necessary to achieve minimum replication
time. This is if there is uncertainty for a locus to become licensed. To compensate
for not activated origins, replication forks need to travel farther than in the ideal

1 The replication time of the yeast genome for the case of replication starting from one single origin
of replication is 1.2 · 107 bp/(2 · 1.5 · 103 bp/min)=2.9days.
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(a) (b)

Fig. 2.1 Space–time diagram of four origins of replication (hollow circles). Schematic represen-
tation of origin loci distributed along the x-coordinate of a unit-sized chromosome. They have all
been licensed and activate at the same time t = 0min. The replication fork movement (black line)
along the x coordinate at a given point in time is shown, and forks terminate when they coalesce or
arrive at an end of the chromosome (black filled circles). a The resulting replication time is minimal
if all four origins are regularly spaced. b If origins are grouped (shown on top of each other) only
one origin of a group is able to activate. The forks must travel a longer distance at the same speeds
as in (a); the replication time is hence longer

scenario (Fig. 2.1a). It becomes a balancing act of either spreading out origins but
risking failure and longer fork travelling times, or grouping origins to compensate
for the likelihood of failure and initially have longer gaps between groups. Using
mathematical modelling we show that there exist certain regimes between grouped
and separated origin loci positions depending on the likelihood of activation.

We relate our modelling to budding yeast Saccharomyces cerevisiae, which has
origin loci at specific genomic positions on a chromosome—some origins in groups
and some separated. For the Saccharomyces cerevisiae origin distribution we inves-
tigate through our model what the optimal origin distribution must be, and find that
grouping of origin loci is present within Saccharomyces cerevisiae origin distribu-
tion to minimise replication time. This is done through an evolutionary model which
searches for loci positions to give minimum replication time, and our simulations
results of optimal origin positions compare well to the experimental origin distribu-
tion. We also extend our model of specific genomic positions to apply it to the case
of a circular chromosome. Finally, we also introduce uncertainty in origin activation
time. An origin might never have the chance to activate if it has a high chance of
activating later than other origins so that it always becomes replicated by forks that
originated elsewhere.We show that in such a scenario origin grouping is also ameans
to minimise replication time. We use the example of Xenopus laevis where origins
appear to take random positions. In experiments, groups of origins however appear
to be regularly spaced [8] which we show gives indeed minimum replication time in
our model.
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Fig. 2.2 Histogram of Saccharomyces cerevisiae inter-origin distances. The separation from one
origin to its nearest neighbour is determined and then binned at intervals of 5kbp (black bars). The
origin position data was kindly provided by Hawkins et al. [9]. The mean of this data is 26kbp,
which is used to plot an exponential distribution with the same mean value (blue solid line)

2.1 Properties of Origins of Replication in Saccharomyces
cerevisiae

If the origin loci in Saccharomyces cerevisiae would take their position within the
genome randomly, then their nearest neighbour distances should be exponentially
distributed.Ahistogramof inter-origin loci distancesSaccharomyces cerevisiaehow-
ever shows that this is not case. We show this in Fig. 2.2 where we plot a histogram
of a recent study by Hawkins et al. [9]. The mean distance of the experimental data is
26kbp which does not fit an exponential distribution with the same mean value. Also
the inspection of a map for loci on the Saccharomyces cerevisiae genome reveals
that there are groups of two or three very closely spaced origin loci which are promi-
nent in most chromosomes [10]. We show such a map of Saccharomyces cerevisiae
origin loci in Fig. 2.3 from the origin location data that was used in the study by
Hawkins et al. [9]. Furthermore a similar map of origin loci of the fission yeast
Schizosaccharomyces pombe gives a similar predominant grouping behaviour of ori-
gin loci (Fig. 2.4). It is to note that Schizosaccharomyces pombe has fewer but longer
chromosomes than Saccharomyces cerevisiae which still require a large cohort of
possible origin sites that have to be spaced with minimal gaps between to allow
replication within the time allowed by the cell cycle. The data was taken from the
oriDB database [10], and origin loci are shown for those classified as ‘confirmed’ or
as ‘likely’.

Previous theoreticalworks on Saccharomyces cerevisiaehave used the experimen-
tally determined loci as given parameters, without attempting to understand why the
origins are located where they are [11–14]. Here, we will first show an analysis of
Saccharomyces cerevisiae origin data addressing this, and then use mathematical
modelling to explain the origin loci distribution for a specific chromosome.

As discussed in Sect. 1.4, DNA replication is divided into two distinct phases; the
licensing phase and the synthesis phase (S-phase). Origins in budding yeast carry a

http://dx.doi.org/10.1007/978-3-319-08861-7_1
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Fig. 2.3 Map of Saccharomyces cerevisiae origin positions. The location of origins (red bars) is
shown along each individual chromosome as numbered (blue horizontal line). For reference, the
length of the smallest chromosome, chromosome 1, is 230kbp. The origin position data was kindly
provided by Hawkins et al. [9]
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Fig. 2.4 Map of Schizosaccharomyces pombe origin positions. The location of origins (red bars)
is shown along each individual chromosome as numbered (blue horizontal line). For reference, the
length of the smallest chromosome, chromosome 3, is 2450kbp. The origin position data was taken
from the oriDB data base [10], and only those classified as either ‘confirmed’ or ‘likely’ have been
considered here

certain sequence motif which allows ORC to specifically bind to a target location
during licensing. Thismeans that Saccharomyces cerevisiae proteins take fixed origin
positions along chromosomes, and we term these positions origin loci to distinguish
them later from licensed positions to which we refer to as origins. Although origin
loci are at specific sites on the Saccharomyces cerevisiae genome this does not mean
that every origin locus is going to become an active origin during each and every
round of the cell cycle; i.e. not all origin loci become licensed every time. This is
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because there are stochastic factors involved that hinder ORC from finding its DNA
binding motif; also ever once licensed an origin might not become activated during
S-phase.

For the analysis, we assign to every origin locus certain (simplifying) properties.
The first one is what we term competence, and it describes the likelihood of an origin
locus to actually become licensed which will give it the ability to become activated.
It is a value between zero and one and for example, a 50% competent origin becomes
on average licensed in every other round of the cell cycle, a 25% competent one is
licensed in every fourth—the larger the value, the higher the likelihood of licensing.
The second property defines the time when a licensed origin activates; it is the ori-
gin activation time distribution assuming that the origin is not passively replicated.
We characterise this probability density to activate in S-phase by a distribution,
which in case of a Gaussian distribution has mean time of activation μ and standard
deviation σ . Previous analysis of the origin activation time distribution suggests a
bell-shape-like function [15], and thus a Gaussian distribution is a good first approx-
imation. In a previous mathematical model of DNA replication which incorporates
these origin properties Hawkins et al. [9] determined parameters of the entire ori-
gin population in budding yeast using a model developed by Retkute et al. [16].
They fitted their model to experimental replication timing curves of Saccharomyces
cerevisiae to determine the competence, mean and spread of an origin activation
time distribution. For their study, Hawkins et al. and Retkute et al. chose a Hill-type
function to represent their origin activation time distribution which depends on two
parameters t12 and tw which are similar to mean and standard deviation of a Gaussian
distribution. Their choice of a variant function manifests in the possibility of hav-
ing origin activation prior to the begin of S-phase, which is biologically unphysical.
AHill-type function however gives origin activation times well defined between zero
and later times although any other choice of function can display replication time data
equally well (personal communication with Renata Retkute). Hawkins et al. study
uncovers valuable information on the spatial distribution of origins along chromo-
somes, and the parameters of origin loci.

We here analyse their data which we will discuss for the remainder of this section.
Of particular interest is whether specific genomic regions for origin loci are random
or whether their spacing depends on the competence value of their neighbours. We
calculate the sum of the competence values for adjacent origin pairs, and look at
a plot of this against their genomic separation. Figure2.5 shows that this separates
groups with a low value from those with a high value. We expect that most points
would be roughly near the diagonal, and the two off-diagonal corners to be empty.

Plotting the distribution of origin data shows a somewhat linear trend between the
competence of neighbouring loci pairs and their separation (Fig. 2.6a).We emphasise
on the left-hand tail of the distribution which shows that low competent origins per se
are closely located for a certain parameter regime up to about 2/3. Highly competent
pairs tend to be further separated from their nearest neighbourwhereas lowcompetent
pairs have a tendency to be very close to each other; although there are also close
nearby pairs for the case of highly competent origins. This tendency is also reflected
in the correlation coefficient of 0.331 (p-value ∼10−13) for this data. As we show



24 2 Optimal Origin Placement for Minimal Replication Time

0 1 2
0

20

40

60

80

Σ competences/efficiencies 

ne
ig

hb
ou

r 
di

st
an

ce
 (

kb
p)

low compentence/
   low eff
orginis in groups

high compentence/
   high efficiency

iciency

separated orginis

Fig. 2.5 Scheme for plotting origin neighbour distances. We plot the distance of adjacent origins
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Fig. 2.6 Competence, efficiency and pair-wise neighbour distance in Saccharomyces cerevisiae. a
Pairwise origin nearest-neighbour distance is plotted against their pairwise sum

(∑)
of competences

are. Highly competent pairs are found on the right-hand side of the vertical line at 4/3, and low
competent ones at the left-hand side of the vertical line at 2/3. b Pairwise origin nearest-neighbour
distances plotted here against the sum of their efficiency, i.e. the probability to become activated
per round of the cell cycle

in Fig. 2.6b, a stronger trend for separation of highly competent origins holds for
our analysis of efficiency—the probability of an origin being competent and also
becoming activated in a particular round of the cell cycle. We emphasise that for the
case of efficiency that there are no close and highly efficient origin pairs (bottom
right corner) Fig. 2.6b.

This trend also persists if one considers sets of three nearest neighbouring origins.
In Fig. 2.7a, b we compare the sum of competences with the maximal or minimal
distance between direct origin neighbours out of a group of three adjacent origins.
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Fig. 2.7 Sets of three adjacent origins (triplets) are taken and either their maximum (a, c) or
minimum (b, d) distance from one another within their triplet are plotted against either the

(∑)

sum of their competences (a, b) or the sum of their efficiencies (c, d)

There is a striking difference in maximal, or minimal separation when considering
low competent and highly competent groups of three, consistent with data for a group
of two. The linear correlation between origin separation and their ability to eventually
activate is even clearer when we also consider efficiency (Fig. 2.7c, d). Figure2.7c
also shows that as the efficiency of a group of three origins increases at least one
origin becomes further and further separated from the other two origins. This also
applies to the minimum distance of a group (Fig. 2.7d). The data gives reason to
speculate that origin positions have thus been chosen preferably to compensate for
origins that have little likelihood to activate by others in their surroundings.

So this data in Figs. 2.6 and2.7 show that the proximity of origin loci correlates
with their competence.These properties are therefore not independent. The remaining
question is however underwhat conditions do origins group andwhether the positions
of origin loci have been favourably selected to minimise the average replication time.
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2.2 A Mathematical Model for Optimal Origin Positions

The data showed that the separation of origin loci correlates with origin competence
and efficiency of their neighbour(s). Yet it is unclear whether those position found
in experiments are actually optimal loci positions—i.e. those giving the minimum
replication time for an average of a cell population. To re-phrase the question, we can
ask whether evolution has driven origin loci to their positions on the chromosome
where they are found today.

2.2.1 A Simplified Two Origin Model

In a first attempt to establish a many origin model we consider the case of having
only two origin loci that are positioned on a stretch of DNA. We also simplify
further that origins only have a probability to activate (or fail). In other words, we
only consider competence pi for the i th origin locus. The DNA is modelled as a
one-dimensional line of unit length, and we denote competences of two loci p1
and p2. We initially make the assumption that origins activate at a well-defined time,
t = 0. All replication forks travel at the same unit speed across theDNA. Specifically,
we consider the geometry depicted in Fig. 2.8a where d1 (d2) is the distance from
the left (right) end of the chromosome to the left (right) most locus. If both loci fail
to be licensed we postulate that replication will eventually take place anyway, with
a replication time T0—for example, we can imagine that this stretch of DNA will be
replicated by forks originating from origins outside of the region we are considering.
It will be clear shortly that our results do not depend on T0; this is just a mathematical
device to prevent us dealing with infinite replication times.

If only one of the loci fails to become licensed, the replication time depends
on the time it takes for the fork to reach the furthest end of the segment, so
Td1 = 1 − d1 for locus 1 and Td2 = 1 − d2 for locus 2. If both loci have been
licensed the replication time Td1,d2 = max{d1, d2, (1− d1 − d2)/2} is defined by the
longest time for a fork to reach the end of the segment or for two forks to collide.
Figure2.8b illustrates that the replication time of an asymmetric placement of loci
is never less than a corresponding symmetric configuration (that is, with d1 = d2).
Therefore we consider only symmetrical locus placements, and use d1 = d2 = d
with 0 → d → 1/2. The average replication time is then given by

Trep(d) = (1 − p1)(1 − p2)T0 + (p1 + p2 − 2p1 p2)(1 − d)

+ p1 p2 max{d, (1 − 2d)/2}. (2.1)

This is a piecewise-linear function with discontinuity in its first derivative at
d = 1/4, and with domain [0 1/2]. Hence, Trep can only have a minimum at
d = 0, d = 1/2, or at 1/4. Placing loci at the end of a segment (d = 0) is obviously
not a minimum of Trep. Placing both loci in the middle (d = 1/2) we assume that
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(a) (b)

Fig. 2.8 Two origin model of DNA replication. a Coordinate system for origin loci with d1, d2
being the distance from the left- or right-end of the chromosome, respectively. x is the position
coordinate along the chromosome. Replication forks travel at a speed v away from the origins. The
grey regions show the replicatedDNA at time t . b Space–time diagram of replication forkmovement
for the case of both origins starting replication at the same time t = 0min. Forks move from each
origin position and replication is completed once a fork reached the end of the chromosome or
the last pair of forks coalesced. A symmetric placement of origins gives minimal replication time
whereas an asymmetric one requires more time, i.e. Td < Ta

both can activate at the same time, however the replication time is then 1/2 for the
last term in Eq. (2.1) as well as for the second term when only one activates. The
replication times for d = 1/4 and 1/2 are

Trep(d = 1/2) = (1 − p1)(1 − p2)T0 + (p1 + p2 − p1 p2)/2

and

Trep(d = 1/4) = (1 − p1)(1 − p2)T0 + (3p1 + 3p2 − 5p1 p2)/4.

We conclude that the two loci group together (d = 1/2) to achieve minimum repli-
cation time if Trep(d = 1/2) < Trep(d = 1/4), which leads to the condition

p2 <
p1

3p1 − 1
. (2.2)

Notice here that T0 drops out. The inequality Eq. (2.2) defines two regions on the
p1–p2 plane, corresponding to grouped or isolated loci being optimum. This is
shown in Fig. 2.9a, where this analytical result is confirmed by stochastic simula-
tions. These simulations are done employing aminimisation algorithm (using genetic
algorithms [17])which searches for theminimal replication time. The principal ingre-
dients to the algorithms are as follows. First, origin loci are selected. Each origin
locus is checked whether it will activate given its competence value, i.e. checking
a random number against this probability. Finally the replication time is calculated,
and this procedure repeats for several times to establish the average replication time.
The positions of the origin loci are then changed, and the average replication time is
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(a) (b)

Fig. 2.9 Optimal locations in a two origin loci model. a Simulation results, showing optimal loci
to achieve minimal Trep for 2 loci with different competences, are shown for p1–p2 combinations
on a lattice grid. Colour indicates d1, d2 = 1/2 (beige) or d1, d2 = 1/4 (brown). The two regimes
are separated by a coexistence line matched by the condition Eq. (2.2) in red. b Optimal position of
2 identical loci with respect to their competence p to minimize the replication time Trep (circles)
and p = 2/3 (dashed line)

calculated for this new configuration. It is then compared to other randomly selected
loci positions to whether or not it results in minimum replication time. In Fig. 2.9a,
the region above the curve corresponds to competences for which Trep is minimized
by loci being apart (d = 1/4) and below the curve for organising these in a group
(d = 1/2). In general, if one of the loci has low competence grouping gives the mini-
mum replication time. In fact, it can be shown that if one of the loci has a competence
lower than 50%, grouping is the optimal situation regardless of the competence of
the other—even if the other is close to 100% competent. This becomes clear with if
one imagines that once a replication fork from an origin has to cover a distance more
than 1/2, such a grouped configuration becomes favourable. Figure2.10 shows how
the individual replication time (Trep) terms change depending on how many origins
become activated.

For the case of equal competences, p1 = p2 = p, the grouped configuration is
optimal if p < 2/3. We ran a numerical optimization algorithm again to find the loci
corresponding to the least replication time for a range of p; these results are shown
in Fig. 2.9b. The same transition also takes place for non-identical values of p1 and
p2—whenever one crosses from the dark to the beige region of Fig. 2.9a.

The above results may seem at first quite counter-intuitive; one might expect that
the configuration with the least replication time would correspond to isolated loci
(d = 1/4). However, if the origins have a significant chance of failing to activate,
this configuration would mean that often one side of the chromosome would have to
wait for a fork which originated at the origin on the other site to replicate it, therefore
increasing Trep. So in the case of low competences, it becomes advantageous to have
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Fig. 2.10 The time it takes
to replicate a given piece of
DNA Trep depends on the
number of origins that activate
(orange filled ovals) or not
activating. This contributes
to the different terms as for
instance in Eq. (2.1)

both loci centered, which is near any point in the chromosome. This explains the
condition for grouping if p < 2/3.

2.2.2 Many Origin Loci

In reality eukaryotic chromosomes have more than two loci [18], so next we inves-
tigate the case of a chromosome on which there are many loci and examine the
conditions under which it becomes favourable to have isolated origin loci compared
to groups. In this analysis wewill assume for simplicity that the loci all have identical
competence.

We consider a group of loci as one single locus with an effective competence peff.
For a group consisting of m loci peff is the competence that at least one locus will be
licensed there, and is given by

peff = 1 − (1 − p)m . (2.3)

We assume that one large group of n identical loci breaks up into two groups of
equal size, each consisting of n/2 loci. A locus organized with others in a group of
size m = n/2 rather than with n loci will give minimum Trep, as long as the locus’
competence is larger than its critical probability pc, given by peff = 2/3, which
yields

pc = 1 − 1/ n
∼
9. (2.4)

Figure2.11 confirms our analytical result showing the value of pc for increas-
ing group sizes in our simulations. These results clearly show that large groups
of many highly competent loci are unfavorable, but that groups tend to form for
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Fig. 2.11 Many origins with variable competence. a Probability at which groups separate pc versus
loci/group n. Shown are simulations (circles) and analytical prediction for pc = 1 − 1/ n

∼
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low-competence loci. Our formula is also a good approximation to predict the prob-
ability at which a transition occurs for an odd number of origins in a group.

So we would expect for example a group of four origins, to break up at pc ≈ 0.42.
Our simulations do show this to be the case (Fig. 2.12a). However the groups of four
origins does not break up symmetrically into two groups of two origins, but rather
into three groups. As peff increases through p, we first see two origins move out to
positions x = 1/4 and x = 3/4 leaving two at x = 1/2. Only at a slightly larger p
do we get two clusters of two. This is due to the fact that we assumed the simple case
of two origins can be directly applied to the more complicated case of more origins.
Figure2.12b shows this as well where we plot the replication time for the individual
configurations. This also illustrates that at first only two loci break out of the four
origin group which is the crossover of the black with the blue line in Fig. 2.12b;
before the blue line crosses with the red one.

2.2.3 Evolutionary Pressure Drives Yeast Origin Loci to Optimal
Positions

Our hypothesis from this modelling is that selective pressure has influenced the posi-
tion of origin loci through the minimization of the replication time. The theoretical
result—low competence loci group, high competence loci are spread out—is also
in line with our data analysis presented in Sect. 2.1. The competence data used for
the analysis there however resulted in silico by model fitting to experimental data.
So it required a proxy that could be potentially biased, and as a further example we
now use a Saccharomyces cerevisiae chromosome for which origin positions and
competence values are experimentally known. We then apply a search algorithm for
it to find the optimal loci positions to achieve minimal replication time. This will
show that in silico optimisation matches a known set of locations.

We show in Fig. 2.14 locus competence and location data for Saccharomyces cere-
visiae chromosome VI, which has been studied extensively [12, 19]. Competences
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(a) (b)

Fig. 2.12 Four origins with variable competence. a Simulation results for positions x of four
identical origin loci with probability p. As p increases spreading loci along the chromosome of unit
length results in minimal replication time. b The average replication time Trep of arranging four
origin loci positions with the same probability [corresponding to configuration shown in (a)]. The
different colours of the curves correspond to: all 4 loci clustered at the middle position (black); 2
loci at x = 1/2, and 2 loci at either x = 1/4 or x = 3/4 (blue); groups of 2 individual loci at either
x = 1/4 or x = 3/4 (red); individual loci x = 0.2, 0.4, 0.6, 0.8 (green)

cannot be measured for all loci (in white), because either they are too close to the end
of the chromosome or to an adjacent locus. We performed a search for the optimal
position for the loci in the region with known competences using a genetic algo-
rithm [17]. The algorithm mimicks an evolutionary process by first selecting sets of
random origin locations for a parent generation of 50 individuals. The parent gener-
ation is then tested for its individual set location to give minimum replication time.
The most optimal of the minimal sets are selected for the next round of iteration.
They then become reshuffled amongst each other to yield a new collection of origin
loci positions on this chromosome. The sets of locations are in tournament. A pair
of randomly selected individuals is set to tournament, meaning the one with lower
replication time succeeds. Ten new sets of location are drawn randomly and replace
the ten worst (maximal replication time) location sets out of the tournament. The
remaining sets produce children. They result from crossing over 85% of the par-
ents which are selected randomly, i.e. 15% of the best part of a population remains
unchanged to the next generation. The selection of new locations from parents results
from crossover of the two parental sets of locations, i.e. either picking location 1 from
parent 1 or parent 2 and so forth. They produce two children sets so that each child
inherits a particular location from a particular parent to 50%; termed crossover. Note
that the number of origins always stays fixed. We then determine the replication time
for the individual position sets just as before. The genetic algorithm was run with a
population of 100 chromosomes of the parent generation and optimised over 2,000
iterationsmeaning the genomes evolve over 2,000 generations. The procedure repeats
for 18,000 times with different seeds of the random number generator. Figure2.13
summarises the algorithm detailed above. The details of parameters here lead to a
local minimum set of origin location in a reasonable amount of computation time.
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Fig. 2.13 Genetic algorithm. Summary of the steps of the genetic algorithm to determine the set
of origin location to give minimum replication time

Although an appropriate choice of biological evolutionary-like parameters can be
used to mimic evolution to occur over millions of years however this requires a sub-
stantial amount of extra computation time as most of the runs end in a local minimum
similar to the one we find below (Figs. 2.14 and2.15).

We remark that in our example of chromosome VI is an identifiability problem
as all strong loci have p ∼ 90%, and we therefore constrained the ordering during
the optimisation. Although in this result we do not consider inter-origin variations
in the origin activation time, the predicted locus distribution from these simulations
bears a good resemblance to the actual spacing with a score of F = 0.112; in
particular we recover the group in the middle, in which an origin locus with 58%
competence is placed next to one with 88% competence. Even multiple repeats of
the optimisation algorithm produce minimum replication time solutions which have
on average F = 0.12 (Fig. 2.15). This indicates that evolution has generated a near
optimal solution for the proper placement of origin loci over many generations. Our
study here shows a possible means to minimise replication time by choosing optimal
origin loci positions. Mutations such as the translocation of genetic sequences occur
frequently in unicellular, eukaryotic organisms such as yeast [20]. The rearrangement
of genetic sequences—origin loci in our model—over many generations is therefore
also a legitimate device in an evolutionary context to achieve minimal replication
timing.

2 F = 1
9

∑n=9
i=1 do

i /dr
i is a measure of the difference between the gap distribution of the optimised

and random cases. A gap is defined as the separation between the i th experimental locus position pe
i

and that of the optimization po
i : do

i = |pe
i − po

i |. dr
i is akin; the average separation that arises from

placing a locus uniformly randomly and pe
i . F = 0means that the optimization fits the experimental

loci positions perfectly; F ∼ 1 indicates no difference to that of a random placement.
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Fig. 2.14 Distribution of origin loci on yeast chromosome VI with known (grey) and unknown
competences [12, 19]. The distribution results from our simulation in search for minimum Trep
(only grey origins considered). The group in the middle of the chromosome with a low and highly
competent locus was recovered

(a) (b)

(c) (d)

Fig. 2.15 Optimisation results for finding the minimum Trep by varying the origin loci positions
given their competences. The blue boxes are the experimental origin loci positions, the arrows show
the positions found in simulations of individual runs. a Origin loci distribution that has the overall
minimum replication time corresponds to Fig. 2.14. b–d Some distributions that give minimum
replication time close to the overall minimum solution

2.2.4 Loci Competence and Circular Chromosomes

Most prokaryotes, for example the bacterium Escherichia coli, carry their genomic
information on a single, circular chromosome. They have no compartmentalisation,
meaning DNA is contained within the cytoplasm and not within a nucleus. There-
fore there is no separation of licensing and origin activation as is in eukaryotes, and
prokaryotes can start replication as soon as their origin locus becomes replicated. So
here we can have re-replication since there is no separation of licensing from synthe-
sis. This way they can produce concurrent copies of their DNA during exponential,
unlimited growth conditions.

Their organisation ofDNA replication on circular chromosome also has the advan-
tageof onlyone replication forkbeing able to replicate its entire genome.For instance,
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Fig. 2.16 One origin model
of circular chromosome. The
replication time for one origin
(blue or red) is independent
of its location due to the sym-
metry of a circle. Replication
forks will always meet after
travelling half circumference

the fork can start from any position on a chromosome, from which it takes the same
time until to complete synthesis; it completes a full circle. This is different from
the previous case of having a linear chromosome. There fork movement is more
constrained because a fork cannot go around and one requires at least two forks
travelling from either direction of an origin to complete DNA or have a fork starting
from an edge of the chromosome. This edge effect was shown in Sect. 2.2.1 to result
in preferred origin locations; only two locations that are symmetrically around the
centre of a DNA segment result in the minimal replication time.

A circular chromosome also has advantage over failing origins or stalling repli-
cation forks to be easily recovered by a fork travelling towards them from elsewhere
on the circle as illustrated in Fig. 2.16. So we note that all positions on a circle with a
circumference we set to unit length result in the same replication time of Trep1 = 1/2
(2 forks, each replicating half of the circle); and therefore any position serves equally
well to act as an origin locus. In principle, we will always observe the same Trep1 for
a population of cells no matter where each individual cell starts its replicating from.
The remaining question is whether there also exist similar origin placement condi-
tions as we observed previously—grouped or separated; and if, so how many origins
are required along with their competence value to achieve minimal replication time.
We consider growth to be limiting, so that there are at maximum two copies of a
chromosome and not multiple ones as during exponential growth, and again ask the
question which loci positions give minimum replication time.

2.2.4.1 Two Origins

The case of two origins, shown in Fig. 2.17, results in a shorter replication time of
Trep2 = 1/4, if both origins origins are maximally apart as is the case for a symmetric
placement in Fig. 2.17a. An asymmetric placement however results in a replication
time less optimal, depending on the maximum distance between the two origins it
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(a) (b)

Fig. 2.17 Two-origin loci model with the angle α and β between them indicated by the grey bar. a
The minimum replication time of Trep2 = 1/4 is achieved by placing the origin loci furthest apart
from each other with distances clockwise and anticlockwise to the other origin being equal. b An
asymmetric placement results in a longer replication time, because it takes longer for two forks to
coalesce

will be 1/4 → Trep2 → 1/2 (Fig. 2.17b). The other extreme is placing both origins
on top of each other, for which we recover the same result as in the one-origin case.
There exists only one optimal configuration, which is placing origins furthest apart
which we show analytically. We define the angle between adjacent origins α and
β. We note that the time of the replicated piece of the chromosome by two forks is
defined by T = α/(2 · 360)◦, which then gives the mean replication time

Trep2 = (1 − p1)(1 − p2)T0 + p1(1 − p2)
1

2
+ p2(1 − p1)

1

2

+ p1 p2 max

{
α

2 · 360◦ ,
β

2 · 360◦

}
. (2.5)

The first term accounts for neither of the origins activating, the second and third
terms account for only either origin to activate and the last term if both do. The
angles are constrained by one full round around the circle 360◦ = α + β which
gives β = 360◦ − α. We can only find the minimum of Eq. (2.5) at either α = 0◦,
α = 360◦ or the discontinuity of the maximum function α = 360◦ − α which is for
α = 180◦. α = 0◦ and α = 360◦ mean that both origins would sit on top of each
other; max{α, β} = 360◦. This only leaves the configuration shown in Fig. 2.17a
with both origins maximally apart to give minimum replication time.

We now write Eq. (2.5) in terms of different competence values p1 and p2 and
include our knowledge that theminimum replication time can only be found for either
α = 180◦ or α = 0◦, i.e. if both origins activate T = 1/4 or T = 1/2, respectively
(cf. Fig. 2.17). We set T0 = 1. The average replication time of both cases is then
given by



36 2 Optimal Origin Placement for Minimal Replication Time

T b
rep2(p1, p2) = 1

4
p1 p2 − 1

2
p1 − 1

2
p2 + 1, and (2.6)

T b
rep2(p1, p2) = 1

2
p1 p2 − 1

2
p1 − 1

2
p2 + 1. (2.7)

The minimum is found using the configuration for α = 180◦ [Eq. (2.6)], because
T a
rep2(p1, p2) < T b

rep2(p1, p2) for p1, p2 ∈ (0, 1]. So even for origins with different
competence it is always best to be farmost apart from each other. This result differs
from our analysis of a linear chromosomes in Sect. 2.2.1.We showed that there exists
a sharp transition from finding origins together or apart depending on the parameter
p1 and p2 for a linear chromosome.

2.2.4.2 Three Origin Loci Break Circular Symmetry: And Group Together

We now examine an odd number of origin loci and continue our analysis in terms
of the time a fork travels. We take the example of three origins and place them as
depicted in Fig. 2.18. The casewhich results inminimum Trep3 = 1/6 is again placing
all origins maximally apart from each other (Fig. 2.18a). Maximum replication time
is achieved by placing all three origin loci on top of each other, which is obviously
not the preferred configuration to achieve an optimal replication time. This leaves
two possible scenarios to arrange the origins. We place two of them maximally apart
and the third one on top of any of the two (Fig. 2.18b), or the third origin is placed
somewhere in the remaining halves (Fig. 2.18c). We note that: if all origin loci are
always competent to activate (p = 100%) then the resulting Trep2 = 1/2 which is
independent of the arrangement of the third origin locus. In a more general approach,
we write an expression for the average replication time

Trep3(p) = (1 − p)3T0 + 3p(1 − p)2T1 + 3p2(1 − p)T2 + p3T3, (2.8)

with which we show analytically that placing origin loci maximally apart is the only
optimal configuration. The four different terms in Eq. (2.8) account for the possible
number of origins activating during a round of the cell cylcle. T0 is the time resulting
of all origins failing, but we note that it can be chosen arbitrarily as it will not
influence our analysis. We choose T0 = 1, as this is the longest time it takes for
one single fork to complete replication. T1 accounts for the time, if only one of the
three origins activates is always independent of the placement of the failing origins.
We know from the case of one origin locus that T1 = Trep1 = 1/2. T2 and T3 both
depend on the chosen configuration for the origin loci, and are defined by when the
last coalescence event happens, so by the maximum distance a fork must travel.

The average replication times T a
rep3, T b

rep3 and T c
rep3 for a circle of circumference

c = 1 and origin loci at the positions shown in Fig. 2.18a–c are given by
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(a) (b) (c)

Fig. 2.18 Three origin loci on a circular chromosome. Three origin loci model with origins in
either green, blue or red, and their corresponding forks shown as lines; origin loci 1, 2 and 3
respectively. Forks coalesce at the positions where two arrowheadsmeets. There exist three possible
configurations to achieve minimum replication time. a All origins are spaced maximally apart. b
Two origins are at either side along the diameter of the circle and the third origin at the same location
of one of the two other. c The third origin can be placed in either half of the chromosome. However
it does not contribute to the minimum replication time since it will always take longer to replicate
the right-hand side of the circle

T a
rep3 = −1/3p3 + p2 − 3

2
+ 1, (2.9)

T b
rep3 = −1/4p3 + p2 − 3

2
+ 1, (2.10)

T c
rep3 = −1/4p3 + p2 − 3

2
+ 1. (2.11)

We note that T a
rep3 < T b

rep3 = T c
rep3 as well as T b

rep3 = T c
rep3 is for all origin sites

with the same p; a group of two origin loci can either be situated at the top half or
the bottom of the circle [configurations (2) and (3) in Fig. 2.19a]. We conclude that
for all identical origin loci T a

rep is the only optimal configuration, i.e. three origin loci

are best placed maximally apart from each other. The cases for T b
rep3 and T c

rep3 both
result in the same average replication time; the open boundary allows replication
forks to travel around the circle. Those cases however are relevant for origin loci that
differ in their competence as we show below.

We fix two loci with competence equal to 1, say p3 = p2 = 1 (red and blue loci
respectively). Using a general expression for the average replication time [Eq. (2.8)
for individual pi values] one can show that the positioning of the third origin locus
with variable competence has no contribution to the average replication. This is for
as long as its competence value is below 0.5. We give the analytic expression of the
average replication time for the configuration shown in Fig. 2.18a, c (p2 = p3 = 1),
which we call T a∗

rep3 and T c∗
rep3 respectively:

T a∗
rep3 = 1/3 − 1/6p1, (2.12)

T c∗
rep3 = 1/4. (2.13)
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Fig. 2.19 Distribution of three loci on a circular chromosome. Origin 1, 2 and 3 have colours
green, blue and red, respectively. a Three loci can be distributed in four different ways on a circular
chromosome. In configuration (1) all origins are equally spread out, in configurations (2) and (3)
one locus pairs with another one, and in configuration (4) the third locus can positioned anywhere.
b Average replication time Trep of a 3 origin system with two loci of competence 100% and one
origin having varying competence p1. Trep is independent of p1 for p1 < 0.5 [configuration (4) in
(a)] and for values p1 > 0.5 it contributes [configuration (1) in (a)]

We see that Eq. (2.13) is independent of p1, the green origin, which is confirmed
through stochastic simulations shown in Fig. 2.19a. There are only two possible
configurations for this setting which are depicted as configuration (1) and (4) in
Fig. 2.19b. Origin loci are either best placed far apart from each other, or only two ori-
gins contribute to the replication time.Minimum average replication time is achieved
for the condition T a∗

rep3 < T c∗
rep3 for p1 > 0.5. Therefore a less competent origin will

not influence the average replication time if combined with two highly competent
origins.

Now we vary the competence of two origins, say the red origin that has p3 = 1
here. We will see that there are four different configurations for this case. These
are shown in Fig. 2.19a. Again using the general expression Eq. (2.8), we find that
the other two green and blue origins cluster together; the red origin, origin 3, stays
isolated as in Fig. 2.19a configuration (2). This is if the following condition is justified

p1 <
p2

3p2 − 1
, (2.14)

which corresponds to the beige region in Fig. 2.20a. The relative position of origin 1
and 2 (green and blue loci) to origin 3 (red locus of Fig. 2.19) is plotted in this figure;
beige indicates locus 1 and 2 group together [configuration (2) in Fig. 2.19a], black
they are 1/2 apart from each other [configuration (3) in Fig. 2.19a], brown all loci
are maximally apart from each other [configuration (1) in Fig. 2.19a].

We now lower p3 as in for example Fig. 2.20b–d where p3 = 0.75, 0.50, 0.25,
respectively. This makes the above mentioned four regions more visible; each cor-
responds to an optimal configuration. If two origin loci have same competence, the
location of the weaker third origin locus can be chosen freely as it will not affect
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Fig. 2.20 The configurations giving minimal replication are shown for the case of three origin
loci. The competence of locus 3 is fixed to either the value of p3 = 1.00 in (a), p3 = 0.75 in (b),
p3 = 0.50 in (c), or p3 = 0.25 (d). Competences p1 and p2 of loci 1 and 2 are varied. The colour
code and numbering correspond to the configurations as shown in Fig. 2.19a. The brown (1) colour
indicates complete separation of all loci. Beige (2) and black (3) colours correspond to grouping of
two loci, i.e. configurations (2) and (3) of Fig. 2.19a. There is a fourth regime along p1 = p2 = 1.00
in (a), p1 = p2 = 0.75 in (b), p1 = p2 = 0.50 in (c), and p1 = p2 = 0.25 in (d) where the
position of the fourth locus positions can be chosen arbitrarily. As the competence p3 decreases the
number of possible configurations of (1), where we find maximal separation, decrease; as do those
for configuration (2)

the result of the average replication time, [cf. Fig. 2.19a configuration (4)]. This is
the case for the randomly coloured shades as one crosses from the beige to the
black region at p2 = p3 = 0.50; the configurations change from (2)→(4)→(3)
(Fig. 2.19a) in Fig. 2.20b. As p3 decreases even further the region of configuration
(1) shrinks even further. Once p3 drops below 0.50, i.e. going from Fig. 2.20c, d,
the regime of configuration (3) increases. This is in agreement with Fig. 2.19b where
we showed that grouping or not requires aminimumvalue to contribute to the average
replication time.

This analysis shows that origin loci grouping is also a means of minimising repli-
cation time for a circular chromosome. If all origins are sufficiently competent they
will be furthest apart from each other. A transition from where it becomes best to
group two origins if they are weaker compared to a third. Then the individual loci
and the group of two take a configuration similar to a two origin model; they are
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Fig. 2.21 An archaeal chro-
mosome with 3 origin loci.
Schematic representation of
the arrangement of the origin
loci (oriC-1, oriC-2, oriC-3)
of the archaea Sulfolobus sol-
fataricus

1/2 apart from each other. There are only a few examples in nature where there
are three origins on a circular chromosome. Most of the organisms with circular
chromosomes and multiple origins are part of the kingdom of archaea [21, 22]. In
Fig. 2.21, we show an example of a Sulfolobus solfataricus chromosome with three
origin loci [23]. The arrangement of its origin loci bears resemblance with what we
have shown here to be the optimal positions for loci with high competence (see also
Figs. 2.19a and 2.18), and there are also several further examples as for instance in
Haloferax volcanii [24] or Sulfolobus islandicus [25] with similar loci arrangements.

2.3 Optimal Origin Loci and Stochasticity in Origin
Activation Time

The above discussions focused on the case of pre-defined loci in yeast and archaea,
and ignored additional noise such as the variation in origin activation time. Stochas-
tic origin activation is also well accepted by biologists and we now examine the
case of stochastic activation time for Xenopus laevis embryos as a model organ-
ism. We remind that unlike loci in Saccharomyces cerevisiae, any DNA locus in a
Xenopus laevis embryo is capable of binding with pMcm to become an origin. Sur-
prisingly, biologists find roughly equally-spaced groups of 5–10pMcms separated
by approximately 10 kbp [26–28]. However do these give minimal replication time
for biological relevant parameters with such an activation time distribution?

We first turn to the case where origin loci have been licensed, and there is a delay
during their activation given by some activation time distribution. For simplicity we
assume that the pMcms at an origin can activate with uniform probability at any time
within a window which has a lower boundary at t0 = 0min and an upper at tb, which
is at maximum the length of an S-phase (20min). The probability for an origin to
activate at some time t is distributed according to
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fT (t) =
{
1/tb 0 → t → tb
0, otherwise

(2.15)

This distribution has mean μ = tb/2 and standard deviation σ = tb/
∼
12 and rep-

resents, for example the grey area in Fig. 2.22a. As an origin activates later than its
neighbour the overall replication is delayed as well. In this scenario replication com-
pletes when all forks have either coalesced or reached the end of the DNA segment.
If an origin does not activate by the time its locus is replicated from a replication fork
which originated elsewhere, it then cannot become activated anymore. The replicat-
ing fork then has to continue synthesis until it reaches the end of the chromosome;
which prolongs overall replication time.

We will use the same approach as for a linear chromosome in Sect. 2.1 now incor-
porating the uniform activation time distribution. In this case, an “origin” is defined
as a locus where at least one pMcm has bound to it, and so it corresponds to 100%
competent locus in the notation we have used so far. In addition, pMcms are assumed
to be all identical with the same activation probability distribution (standard devi-
ation σ = tb/

∼
12). We apply this probability distribution to the two-origin model

depicted in Fig. 2.22a, and we also use the genetic search algorithm [17] to find the
positions resulting in minimum replication time as σ increases. The expectation is
that we will again see a transition of the optimal configuration from isolated pMcms
to groups as σ increases; this is akin to varying competence in our previous sce-
nario. If for most cases an origin activates too late it becomes replicated and cannot
activate anymore. The active replication fork then has to travel a much farther to
complete replication at a much later time as if all origins had activated. We test
this prediction using the two-origin model with one pMcm bound to one origin; we
find numerically the optimal (minimum average replication time) positions for the
origins as a function of σ which are shown in Fig. 2.22b. These results show that
origin grouping is also preserved in the two-origin model with stochastic variation
in origin activation time. Grouping is important for swift replication under condi-
tions of low competence and large noise which we will explain in the remainder
of this chapter. We again use a segment of unit length and forks progress at unit
speed of v = 1kbp/min. We observe a sharp transition at σ ≈ 0.25min, above
which it is best to place both origins in the middle of the segment, as observed in
the case with varying competence. This is consistent with Fig. 2.22c which shows
the average replication time. A minor difference between this case and the previous
one in Sect. 2.1 is that for σ < 0.25, the optimal location of the origins is not constant.
Originsmove by a small amount further towards the edges of the chromosome. Using
aGaussian activation time distribution, as suggested by for exampleGoldar et al. [15]
or Herrick et al. [29], also gives the transition from separated to grouped origin for
a similar σ -value of around 0.25 if we fix the mean at zero (cf. also Fig. 2.23b).
A uniform distribution is thus a good approximation and further has the advantage
that replication can only occur after a set time t = 0. A Gaussian distribution how-
ever has the complication that by its definition an activation prior to the begin of
S-phase is possible. The transition for the uniform distribution we use here is also
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(a) (b)

(d)(c)

Fig. 2.22 a Schematic representation of space–time diagram for a two-origin system. Origins
(hollow circles) can activate randomly within a time window (grey area). This will change the
replication completion time (dotted lines). Forks arrive later at an edge (filled circle), and also forks
from an early origin have to travel further until they coalesce with those of a late origin (red dotted
line). b Origin position x so that the average replication Trep for 2pMcms is minimal on a segment
of unit length, when the standard deviation σ for their activation time increases. c Trep curves for
two-origin systems of (b) at fixed positions (green x = 1/2; red: x = 1/4 and x = 3/4); or both
at random sites (blue). d Phase diagram of the two-origin model to minimize replication time with
changing competence and increasing the σ . Colour indicates origin position relative to chromosome
ends d1, d2 = 1/2 (beige) or d1, d2 = 1/4 (brown)

reflected in Fig. 2.22c where the fixed positions at x = 1/4 and x = 3/4 (red solid
line) result in a slightly higher replication time than compared to a random sampling
of all possible configurations (blue area). Intuitively speaking, the origins group if
the fork travelling towards the middle position needs to travel beyond the position
of the other, i.e. it travels a distance longer than 0.5 and then has to continue until it
reaches the end (see also 2.22a). Figure2.22d shows that the transition between the
group and ungrouped regimes also holds if we vary competence as well as varying
σ of the uniform activation time distribution.

We also remark that our result is independent from the particulars of origin acti-
vation time distribution. Figure2.23 depicts examples for the case of two origins
and using either a distribution where an origin can activate with probability 1/2 at
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(a) (b)

Fig. 2.23 Spread of replication times using different activation time distributions and varying the
time between activations. Two origins are placed on a line of unit length either at positions x = 1/4
and x = 3/4 (blue circles), or both at position x = 1/2 (red squares). In (a) an origin can either
activate at time t = 0min or later with equal probability, thus τ denotes the difference between
those times. In (b) the origin activation time is given by a Gaussian activation time distribution with
zero mean. We increase its standard deviation σ . This allows for activation at times earlier than
zero, hence the decreasing (and ‘negative’) average replication times

t=0min or with equal probability at some later time. The difference between these
times is shown as τ in Fig. 2.23a. It is clear that once the difference in origin activa-
tion time is larger than 1/2 the configuration of having origins positioned at 1/4 and
3/4 does not display any advantage compared to the case of having both origins at the
middle position. Similarly as the standard deviation σ of a Gaussian activation time
distribution passes over a threshold value the grouped configuration gives minimum
replication time (Fig. 2.23b). We note here that once the Gaussian activation time
distribution becomes very wide we achieve minimum replication times as the mean
is fixed at zero, however left hand tail of the distribution stretches towards negative
value allowing (at least one of the) origins to start at some ‘negative’ time.

We now apply this model for more origins and pMcms, using realistic parame-
ters so that we can relate the results to what is experimentally known about pMcm
distribution of Xenopus laevis. We model a stretch of DNA of size 100kbp and
v = 1kbp/min [3]. To determine whether the minimum-replication-time configu-
ration requires pMcm grouping, we distributed 64pMcms in total, i.e. that there is
on average 1/1.5 pMcm/kbp as found in nature [26]. The pMcms are then placed
in 64/n groups of n ∈ {1, 2, 4, 8, 16, 32, 64} origins, so that the origins are uni-
formly distributed through the 100kbp chromosome, or completely random. As the
group size decreases the spacing between origins becomes closer as for instance
shown in Fig. 2.24. Other authors have identified σ to be 6–10min and μ ∼ 15min
(Gaussian-like) in X. laevis [29, 30] as well as in S. cerevisiae [3, 4, 12, 14]. As
works by Herrick et al. and Goldar et al. [29, 30] have identified the activation dis-
tribution at a fixed mean in Xenopus laevis, using a uniform distribution and varying
σ is a good approximation for our analysis here. Our results (Fig. 2.25a) indicate
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Fig. 2.24 Cartoon illustra-
tion of distributing a total of
64pMcms at origins in groups
of varying sizes to simulate the
pMcm distribution in Xeno-
pus laevis. As the groups of
pMcms at an origin decrease
the separation between indi-
vidual origins decreases as
well

that grouping with an equal spacing of up to 12.5kbp achieves precise and fast DNA
synthesis before the end of S-phase (20min) for σ within these limits. We also find
that 8 groups of 8pMcms gives the advantage of a 1.1min quicker Trep than using
random loci; even when the number of pMcms at these 8 groups varies, a quicker Trep
is achieved (data not shown). Grouping pMcms also protects the overall replication
process against fluctuations from one round of the cell cycle to another; a similar
problem is discussed in [31]. This is because one initiation event at an origin is suf-
ficient to activate replication forks and result in a shorter mean time for an activation
event at an origin, as we show below.

The probability of the i th pMcm activating by the time t∗ given our uniform
activation time distribution is

P(Xi = t∗) = t∗

tb
, (2.16)

and the probability that a pMcm activates later than t∗ is

P(Xi > t∗) =
∫ tb

t∗
t ′

tb
dt ′

= tb − t∗

tb
, (2.17)

We consider there to be a group of n identical pMcms at an origin. The probability
of at least one of those activating by t∗ then follows as

P(min(Xi ) = t∗) =
n∑

i=1

⎧
⎨

⎩
P(Xi = t∗)

n∏

j=1, j �=i

P(X j > t∗)

⎫
⎬

⎭
,

= n P(Xi = t∗)P(X j > t∗)n−1, (2.18)

= n
1

tb

(
tb − t∗

tb

)n−1

(2.19)
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(a) (b)

Fig. 2.25 Replication timing in Xenopus laevis. a Inset: Trep as a function of σ for realistic para-
meters as given in the text. Origins are distributed in 4 equally-spaced groups of 16pMcms (blue);
8 groups of 8pMcms (green); 16 groups of 4pMcms (red); 32 groups of 2pMcms (cyan); 64 single
pMcms (magenta); 64pMcms placed randomly (black). Main: zoom around realistic σ ∼ 8min.
For 6 < σ < 20min minimal Trep is achieved for groups of 8pMcms. b Distribution of replication
times T for a 100kbp chromosome under the condition that σ = 8min. Shown is the distribution
of 64pMcms in 8 equally-spaced groups of 8pMcms (green) and placed randomly (black)

According to this origin activation time distribution the mean activation time is
tb/(n + 1). This shows that activation is earlier for a certain group of pMcm com-
pared to an individual that has mean activation time tb/2. So as the average activation
increases through tb it becomes a balancing act to be able to activate before a repli-
cation fork has moved across from another origin elsewhere. The origin must also
not be too sparsely placed to leave small enough gaps between groups to replicate
on time. Grouping is therefore a useful tactic to achieve this by lowering the overall
activation time of a group of pMcm.

In a natural environment, one might expect that there would not be strict equal
spacing of groups as we show it here. We now relax our previous assumption by
taking evenly-spaced groups and perturb the location of each group by a small ran-
dom amount drawn from a Gaussian distribution. The introduction of such variation
allows us to compare our simulation with available experimental data of replicated
genomic regions, which were captured as centre-centre distances at around 5min
after the onset of replication (for instance in Blow et al. [27]). Figure2.26 shows
that our result is in agreement with the current understanding of the biological com-
munity, i.e. groups of 5–10pMcms about every 10kbp. This may be achieved by
a regulation of pMcm—loading proteins, whose affinity to bind decreases around
existing origins [32, 33]. Although a random placement represents the data similarly
well, Trep remains smaller in this case where the origin groups are not equally-spaced
as seen before (cf. Fig. 2.25b).
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Fig. 2.26 Centre–centre distribution from three experiments [27] (squares) and from simulations
5min after replication started. The simulation is positioning groups of 4pMcms every 6.3kbp (solid
line), groups of 8pMcms every 12.5kbp (circles), or all randomly (crosses). A small random amount
was added to the group location of fixed distances which was picked from a Gaussian distribution
with σ ∼ 16% of group distances. The pMcm/length ratio was fixed with a total of 64 origins
distributed per 100kbp of DNA (cf. Fig. 2.25a)

2.4 Summary

Grouping is a means by which replication time is minimised and it strongly depends
on the parameters of an origin. Some of the previous models of DNA replication
neglected this fundamental question of where origins should be placed to minimise
replication time.

We have shown that random fluctuations in the formation of origins, and the sub-
sequent activation of proteins lead to variations in the replication time. We analysed
these stochastic properties of DNA and derive the positions of origins corresponding
to the minimum replication time. This was done calculating the relation between
the competence of the origin to activate and the replication time; low-competence
replication origins tend to group in order to minimise replication, and so do origins
with long delay in their activation time. This delay is independent of the shape of
the activation time distribution of the origins. Moreover we intuitively showed that
origin grouping occurs to compensate for the origin failure. It thus only depends on
whether or not an origin had become activated before it becomes passively replicated
by a replication fork that originated elsewhere.

We have related this to experimental data in a number of species. All of those
organisms show that origin grouping on linear as well as circular chromosomes is a
means for minimising replication time. We finally showed arguments to prove our
hypothesis that evolution has driven origins to the locations where they are found
today. For thisweusedSaccharomyces cerevisiae as an example, howeverwepropose
that our results also applies to other yeast species such as Schizosaccharomyces
pombe.
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Chapter 3
Actively Replicating Domains Randomly
Associate into Replication Factories

In the previous chapter DNA was treated as a stiff, one-dimensional line.
However within a cellular environment DNA diffuses and organises into structures
on different scales as for instance being wrapped around nucleosomes or forming
chromatin. This brings otherwise far-away genomic regions into physical contact
with each other. Yet it is unclear what leads to such an organisation of structures in
three dimensions—especially during DNA replication. Recent advances using chro-
mosome conformation capture data, e.g. HiC, 3C, 4C techniques, shed some light on
the way chromosomal regions (domains) interact with each other for example during
protein expression or genome duplication (see review and commentary [1, 2]). The
technology captures the organisation of chromosomes in form of contact maps that
can help to understand the organisation of chromosomes in a given cell subject to
particular (growth) conditions. There is also an increasing body of work modelling
chromosome interaction data using techniques from graph theory [3] or polymer the-
ory [4, 5]. One disadvantage of these technologies is that they also captures random
collisions of chromosomal region with another. The experimental result thus also
contains information of unspecific interaction that occurred among genomic loci and
the signal must be sufficiently from those regions that specifically come into con-
tact. A further confounding factor is that the majority of experiments, that use the
chromosome capture techniques, average over populationmeasurementswhen estab-
lishing interaction and chromosome contact data. They therefore pursue a top–down
approach by inferring single-cell operations from population studies. It is difficult
to draw conclusions from these studies about mechanism occurring on a single-cell
level.

We present here—onbasis of single-cell experiments—themechanism that causes
replication forks (replisomes) in Saccharomyces cerevisiae to establish chromoso-
mal interactionwhich affects further organisation into replication factories.We show
that these factories stem from random interaction events of adjacent replication forks.
Our theoretical model establishes from experimental grounds. Data is derived from
a technique initially established by Kitamura et al. [6] for single Saccharomyces
cerevisiae cells to visualise replication on DNA. Their data shows that during DNA
synthesis genomic regions (domains) undergoing replication—so called replicons—

© Springer International Publishing Switzerland 2015
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(a)

(b)

(c)

Fig. 3.1 Observations of two replicating dots. Two genomic loci have been labelled either in green
or in red. If these loci undergo replication the observed intensity at these loci doubles. With this
information one can establish whether or not both loci are seen in close contact (a), or whether
they are localised far apart (b) during DNA replication. Panel (c) shows a graphical interpretation
of close dot localisation, which can lead to replication in the same factory, or not as in (a) and (b).
Details for the experimental are provided in Saner et al. [8]

become associated with each other. They label DNA near origin loci sites which
allows them to observe when a replicon becomes replicated; the fluorescent inten-
sity at a replicated region doubles. This is illustrated in Fig. 3.1. Moreover labelling
two regions also shows that those sometimes become associated (Fig. 3.1a) forming
replication factories of about 90nm in diameter [7]. In some other cases, labelled
regions do not associate when a region undergoes replication as for example in
Fig. 3.1b. It is currently an open question how association occurs and an exten-
sion of the labelling technique by our experimental collaborators using multiple
labelled sites produces new experimental data of replicon associations (see also Saner
et al. [8]).

This data alone is incomplete and requires a physics approach for a holistic com-
prehension to whether or not association is a deterministic or stochastic process. We
complement their data using a mathematical model to allow further insight. We test
our model numerically first using a Metropolis-Monte-Carlo algorithm. This then
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(a)

(b)

Fig. 3.2 Tagged replisome pair distances on chromosome VII. a Replication profile of the relevant
genomic region on chromosome VII obtained from [9]. Origin loci (ARS727–731) are the values
of the timing profile and tetO (red) or lacO (green) where integrated in three different strains as
a combination of ARS727–728, ARS727–729, and ARS727–731. b Diagram of the length scale
of sites which were labelled near replicating origins. Each of three different strain had ARS727
labelled as a reference (red dot) and in green in that strain either ARS728, ARS729, or ARS731 was
labelled (green dot). Length scales between neighbouring points is given in kbp. The chromosomal
distance d between relevant replisome pairs upon replication of fluorescent dots (i.e., tetO and lacO
arrays) is estimated assuming that upon replication sister replisomes stay together. Thus, to obtain
the chromosomal distance d between replisome pairs, only the integration sites of tetOs and lacOs
a need to be considered, but not the length of these arrays, as shown by the distances

allows us to extend it from a four origin in vivo experiment to a whole-genome in
silico one. Without further need for any parameter we relate back to observations of
entire cells and the size distribution of their replication factories.

3.1 Summary of Experimental Procedure

To investigate the organisation of replication factories Saner et al. [8] analysed the
behaviour of replicons using live-cell microscopy in Saccharomyces cerevisiae. They
chose a region on chromosomeVIIwith four adjacent replication origin loci (Fig. 3.2)
and selected one locus on each replicon such that all four loci show the same average
replication timing [9]. They integrated two DNA sequences into a chromosome.
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Origin

Replisome
Replication factory

Replicated DNA
Parental DNA

tetO s (TetR-3CFP)
lacOs (GFP-LacI)

Replication at the same factory

Replication at different factories

Fig. 3.3 Concept of replication factories.Models for replication of two replicons at the same factory
and at different factories. If two replicons are processed for replication in the same factory, CFP and
GFP fluorescent dots should come into close proximity during replication i.e. when the intensity
of the dots increases. In contrast, if replicons are processed in different factories, they do not come
closer during replication

Those sequences are normally repressedby the bindingof afluorescent protein. Those
inserted genes are tetO and lacO arrays producing a separate strain for each of the
three different red–green combinations of Fig. 3.2. These arrays bound TetR and LacI
proteins, fused with cyan and green fluorescent proteins (CFP, GFP), respectively,
and were thus visualised as small fluorescent dots. The fluorescent dots increased in
intensity upon DNA replication as the number of arrays was doubled, thus defining
their replication timing by microscopy [6].

To analyse how replicons are gathered into factories, only cells whose twomarked
loci replicatedwith similar timing, i.e. their difference in activationwas<3min, were
taken into account. When both loci replicated and they were observed in close spatial
proximity of less than 350nm apart for more than 2min, they were considered to be
replicating in the same factory (Fig. 3.3). In contrast, if replicons are processed in
different factories, the fluorescent dots do not come close during replication.

Using this protocol, it was found that the two marked loci in the first strain
(ARS727–728: 53 kb apart) replicated in the same factory in 43% of cells (10 out
of 23) and in different factories in 57% of cells (13 out of 23). This suggests that
grouping of replicons within factories can vary from cell to cell. In contrast, in the
other two strains ARS727–729 and ARS727–731, the two marked loci replicated
in the same factory less frequently: 11% (2/19) and 5% (1/19), respectively. Thus,
replicons that are close along a chromosome were often processed for replication
in the same factory, but replicons that are farther apart replicated more frequently
in different factories. The manner by which this occurs is not directly inferable
from the data alone and requires additional modelling to explain the association
of replisomes and the amount replisomes per factories. We therefore introduce a
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Fig. 3.4 Replication factories observed by super-resolution microscopy. Cells (T8375) with GFP-
POL30 (PCNA), SPC42-mCherry (a component of spindle pole body, SPB), and NIC96-mCherry
(a component of the nuclear pore complex, NPC) were released from δ-factor treatment (defined
as 0 min). a A bright-field image, a fluorescence image (GFP, green; mCherry, red), and the 3D
rendering of a fluorescence image (GFP, green; mCherry, red) in a representative cell, which was
fixed at 40 min. b The number of PCNA foci (mean± SD) within the nucleus along the time course.
For further experimental procedures refer to Saner et al. [8]

mathematical model that will help us to understand the meaning of the above
mentioned association probabilities.

A further set of data from this study contains single-cell images of fluorescent
PCNA; a unique replication fork component which shows where replication forks
localise (cf. Sect. 1.5, page 10ff). Images as shown in Fig. 3.4a contain size distribu-
tions and the count of PCNA foci at a particular time point (Fig. 3.4b). We will use
our mathematical model and apply it to genome-wide yeast replication simulation to
establish the number of forks per factory in silico as well as determine this number
independently in vivo.

3.2 The Diffusion Time Scale of Two Replicating Dots

In the above experiment for replicon grouping probabilities, two dots appear
associated if they are in close proximity. This can occur via two routes (i) replication
forks have reached the location of an adjacent dot or (ii) two dots meet randomly
due to diffusion. In experiments, the diffusion coefficient of one dot was obtained
and found to be D1 = 0.2µm2/min. The typical diffusion time scale for one dot to
travel some distance L is calculated using [10]:

tD = L2

2D
. (3.1)

http://dx.doi.org/10.1007/978-3-319-08861-7_1
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Fig. 3.5 Target finding time.
To establish the target finding
time we fix one replisome
pair at the centre of spherical
volume V which has radius
r . The moving pair (green)
performs diffusion with twice
the diffusion coefficient of
one particle until it hits the
centre particle (red). This
target region has a diameter
of 2α, i.e. twice of that of one
particle. illustration

V

2d

Since we have two particles diffusing, this is equivalent to one particle diffusing
with D = 2D1. Hence, we double the diffusion coefficient in the Eq. (3.1). The
DNA is not as fully stretched as is shown in Fig. 3.2b for instance. We therefore
apply a chromatin packaging ratio of 10nm/kbp, based on a ratio of measured spa-
tial distances over the chromosomal distances between two fluorescently labelled
chromosomal loci. This matches a reported value [11]. For the maximum distance
between the origins in the second strain with ARS727–729, L = 1.3µm corre-
sponding to chromosomal distance of 129 kbp between the fluorescent dots [12].
The diffusion time-scale for this length is∼2min. In this strain it takes 4–6 min after
replication initiation at ARS727 and ARS729 until tetO/lacO dots are replicated (i.e.
until replication forks reach the middle of tetO/lacO arrays, which are 10–11kb in
length). Replication from one dot to another, i.e. replicating a distance of 50kbp (cf.
Fig. 3.2), takes about 15min. So diffusion can in principle account for two dots to
meet and to be seen associated under the microscope. However the diffusion time
scale alone does not mean that the two dots will actually meet within this time.

We therefore establish a further property for a system of two diffusing dots which
is the mean target finding time. This measure allows to estimate whether the dots not
only have time to explore a certain distance, but also whether they actually meet with
another, i.e. the time scale until one dot will encounter another. We derive the target
finding time in analogy to Sneppen and Zocchi [10] by rephrasing our problem as
depicted in Fig. 3.5. Instead of describing two sister replisome pairs diffusing in a
spherical volume, it is equivalent to fix one sister replisome pair (red) at the center—it
becomes the target—and the second pair (green) diffuses around this target (shown
in Fig. 3.5). Hence, the diffusion constant of the second pair D is the sum of its own
diffusion constant and that of the target, which we place at a fixed position. The
spherical volume V , in which the mobile pair diffuses to find its target, has radius
rd . This radius rd = d is defined by the distance of the pairs to be at a distance d
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maximally apart from each other (cf. Fig. 3.2). The radius of the spherical volume
(dotted circle) that two sister replisome pairs occupy once the mobile pair meet the
target, is twice the diameter of one and therefore 2α.

We describe this process using the standard diffusion equation

βp(→r , t)

βt
= D∼2 p(→r , t), (3.2)

with position probability density p(→r , t) for finding the mobile pair at a particular
position →r at a time t . We are interested in the equilibrium state, that is for once the
systems has reached steady-state. We therefore set the left hand-side of Eq. (3.2) to
zero as the system will be independent from time

0 = D∼2 p(→r , t). (3.3)

We simplify the equation by assuming that p(→r , t) is independent from any par-
ticular direction (isotropic), and only depends on the radial distance rd to the fixed
pair. Using spherical coordinates we show that the probability distribution satisfies

d∫

r=0

τ∫

θ=0

2τ∫

φ=0

p(r, θ, φ) r2 sin θ drdθ dφ = 1. (3.4)

It then follows from the position probability density distribution p(r, θ, φ) = const
and

d∫

r=0

τ∫

θ=0

2τ∫

φ=0

r2 sin θ drdθ dφ = V (3.5)

that
p(r, θ, φ) = 1/V . (3.6)

In order to solve the second-order differential equation, Eq. (3.3), we choose two
boundary conditions:

1. When themobile pair is away from the fixed one (rd > α), there is a flux I towards
the fixed origin

I = −4τ Dr2
dp(rd)

drd
, (3.7)

2. When the mobile pair is far away from the fixed one, the probability of finding
the particle is p(≈) = 1/V .

We then obtain,

p(rd) = I

D4τrd
+ p(≈) (3.8)



56 3 Actively Replicating Domains Randomly Associate into Replication Factories

0 200

particle distance (kbp)

400 600
0

50

100

150

200

<
ta

rg
et

 fi
nd

in
g 

tim
e>

 (
m

in
)

Fig. 3.6 Simulation of average target finding times. Two particles move freely in a given volume
(green squares), or one dot moves with the sum of the diffusion constant of both particles for the
average time it takes for both particle to be found associated if they diffuse in the given volume,
i.e. given by the maximum separation allowed. The solid red line shows the analytical result for the
average target finding time τon given by Eq. (3.9) for D = 0.2µm2/min and α = 62.5 as chosen in
these simulations

as the solution for Eq. (3.3). The probability of finding the mobile origin at the target
is P(α) = 0. We now solve Eq. (3.8) for the flux I which is the inverse of the time it
takes for the mobile origin to find the target

τon = 1

|I | = V

4τ Dα
= r3d

3Dα
. (3.9)

We check our analytical result of Eq. (3.9) numerically by simulating the diffu-
sion of both origins given some maximum separation distance. We also check this
against the consideration of one being fixed at the origin and the other moving with
a diffusion coefficient that is the sum of both. Figure3.6 shows the results for this
and it also confirms that our analytical derivation of τon appropriately describes the
average target finding time. We remark that the simulation result here is for illus-
tration purposes only as we have D = 0.2µm2/min and α = 62.5 chosen in these
simulation; their actual values become refined in the discussion further below.

The above derivation assumed that replisomes find each other from initial
maximally-extended DNA length, i.e. the distance is always as shown in Fig. 3.2.
In an experimental setting this clearly not the case, cells are selected at random, and
replisomeswithin each cell can take their initial position during replication anywhere
within a volume that has a maximal diameter as the length of the DNA connect-
ing them. We therefore calculate the mean radial distance ◦ract∈ of those two. The
probability density distribution to be anywhere in that spherical volume of fixed V
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(thus d = const) is the same throughout (uniform). Hence the probability density
p(dact) of replisome pairs being at an actual distance dact away, i.e. the moving
replisome lies on a spherical segment 4τd2

act, is given by

p(dact) = 4τd2
act

V
, (3.10)

which satisfies
d∫

dact=0

p(dact ) ddact = 1.

In a collection of individual cells we therefore find the average distance between
replisomes as

◦dact ∈ =
d∫

0

dact p(dact ) ddact,

◦dact ∈ = 3

4
d. (3.11)

This means that we rescale the known chromosomal distance d by 3/4 which
yields for the average target finding time of a collection of cells

τ
pop
on = 1

|I | = (3/4d)3

3Dα
= 9d3

64Dα
. (3.12)

We now determine the duration for two sister replisome pairs to meet each other
based on Eq. (3.12). This is the time required for the system to approach equilibrium.
As a result of taking both replication and diffusion processes into account, the time
needed for two sister replisome pairs to find each other is approximately in the
the range of 1–5 min in strain ARS727–728 and ARS727–729, respectively. The
time of diffusion suffices so that nearby replisomes can associate by the replication
of the tetO/LacI arrays. It further allows us to draw an adiabatic assumption—the
associationprobability relaxes to its local equilibriumona time-scalewhich is smaller
than replication time-scale. This is important to establish an equilibrium model of
random associations of replisomes in the following section.

In a wider context, the organisation of DNA inside the cellular nucleus can influ-
ence diffusion. The data used to determine the diffusion in the experiment by Saner
et al. [8] displays a mean squared displacement which shows saturation at longer
times (Figs. 3.7, 3.8 and 3.9). This is characteristic for anomalous diffusion as for
example occurs in crowded environments such as the cellular nucleus. The satura-
tion is particularly visible in Figs. 3.8 and 3.9. Previous work, as for example the
one by Heun et al. [13], also showed that when cells undergo replication diffusion
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Fig. 3.7 Diffusion of a DNA locus. Mean squared displacement (MSD) of a tagged DNA locus is
plotted as a function of the time interval of observation 	t . This was done for a stage of S-phase in
the experiment by Saner et al. [8] observing the locus at 25–33 min after δ-factor release. Shown
here are examples for two cells

Fig. 3.8 Diffusion of a DNA locus. Mean squared displacement (MSD) of a tagged DNA locus is
plotted as a function of the time interval of observation 	t . This was done for a stage of S-phase in
the experiment by Saner et al. [8] observing the locus at 35–43 min after δ-factor release. Shown
here are examples for three cells

slows down, which authors claim to depend on the openness of the chromatin. Of
relevance here for our estimate of the target finding is diffusion at short time scales
(∼2min) which allows us to draw a rough estimate of the target finding time as we
have done above. In particular the plots shown in Fig. 3.8 which correspond to the
time point relevant of replication of the origin loci tagged in the experiment by Saner
et al. [8]. However we remark a model also accounting for anomalous diffusion will
give a more accurate approximation.
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Fig. 3.9 Diffusion of a DNA locus. Mean squared displacement (MSD) of a tagged DNA locus is
plotted as a function of the time interval of observation 	t . This was done for a stage of S-phase in
the experiment by Saner et al. [8] observing the locus at 45–53 min after δ-factor release. Shown
here are examples for three cells

3.3 Binding Energy

Using the above assumption that we can treat the system to be in thermodynamic
equilibrium allows us to use an analogy for the different strains. Each strain has two
replisomes connected by DNA of varying length.

We therefore rephrase our problem as two particles tethered by a string of length
d. This describes two sister replisome pairs that are apart from each other at a chro-
mosomal distance d (Fig. 3.10). Each sister replisome pair is thereby a particle fixed
to the end of the string. Each particle is considered to be a sphere with diameter α.
We assume the string has no stiffness, given that the persistence length of yeast chro-
matin is short (2.5kbp [12]) relative to the distance between replication origins and
between marked chromosome loci analysed here. The particles perform a random
walkwithin a sphere of radius d/2 in three dimensions (illustrated in two dimensions,
for simplicity, in Fig. 3.10). If both particles come close within interaction radius, i.e.
the distance between their centres is α or less, they associate. Note that we here place
the centre of reference at the middle of the string (the centre of mass), compared
to the derivation in the previous section were the coordinate system was fixed at a
particle.

The two particle system can be in two conditions. First, when particles are
separated; the energy of the system is then E = 0 (Fig. 3.10a, b). Second, when
particles are in close proximity and become associated; the energy of the system is
then E = J, where J is a binding energy (Fig. 3.10c). Therefore, J is negative, meaning
that the particles’ interaction is attractive.

Our aim is to estimate the probability of finding the system in any of these
conditions—particles separated or particles associated—depending on the string
length between them. The probability that the two particles meet and associate with
each other when the system is in thermodynamic equilibrium is
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Fig. 3.10 Schematic diagram of the particles on a string model. Two particles are connected with
a string of length d. The two particles and the string represent two pairs of sister replisomes and
the chromosome region between them, respectively. a, b The particles move by a random walk and
the energy remains E = 0 as long as they are separated (left, central panels). c If the two particles
are associated with each other, i.e. the distance between the centres of the particles is, the energy is
reduced (E = J , J is the binding energy with a negative value)

Pa = na Ba

na Ba + ns Bs
, (3.13)

where na and ns are the normalised numbers of states inwhich particles are associated
and separated, respectively. Ba and Bs represent corresponding Boltzmann factors
(weighing factors). Each Boltzmann factor B = e−E/(kB T ) depends on temperature,
T , and energy, E , of the system. kB is the Boltzmann constant.

The normalized number of states is derived as follows. As the reference frame is
centered at the midpoint, states corresponding to the particles separated by a distance
R lie on a spherical shell of radius R/2. Particles are considered to associate once the
distance between their centres is less than α, i.e., they are within a sphere of radius
α/2 around the origin. The volume of this sphere is

Va = 4

3
τ

(α

2

)3
. (3.14)

We normalise the number of states to the total volume

V = 4

3
τ

(
d

2

)3

. (3.15)

The normalised number of states in which two particles associate is then given by

na = Va

V
=

( α

d

)3
. (3.16)

The energy of the system at this association state is minimised, thus Ea = J , with
the corresponding Boltzmann factor
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Ba = e−J/(kB T ). (3.17)

The normalised number states in which particles are not associated is

nS = V − Va

V
∗ 1, (3.18)

for a small interaction radius (α << d). The energy of the system when the particles
are apart is ES = 0, and the Boltzmann factor is Bs = 1.

Therefore the association probability from Eq. (3.13) is then

Pa =
(

α
d

)3
Ba

1 + (
α
d

)3
Ba

= 1

Ad3 + 1
, (3.19)

where A = eJ/(kB T )/(α3) is a constant with constant temperature. Equation (3.19)
describes the probability of two particles, separated by a distance ≤ d, being asso-
ciated in an equilibrium system.

3.4 Test of the Analytical Result Versus Computer Simulations

In the previous Sect. 3.3, we derived an analytical expression for the probability of
observing two dots in a joined configuration. Our assumption is that we can treat
the system to be at equilibrium and that the state of having both particles in a joined
configuration minimises the energy of the system. In this section, we test our theory
with help of computer simulations, and we use an algorithm known as Metropolis
Monte Carlo simulations [14].

It allows for testing the different configurations of the system and the sampling of
transitions from one state to another depending on the binding energy J , e.g. from
associated to non-associated particle configurations. For the simulations here we
simplify to problem by placing the particles on a cubic grid. For example a particle
can be at position (0, 5, 0), i.e. particle positions are direct integer coordinates in our
simulations. If both particles have the same coordinates that means they occupy the
same grid point and we recognise them to be in an associated configurations and the
energy of the system is E , or they are not associated and the energy of the system is
0 otherwise. Note that the interaction radius is thus of the order of a unit cell. When
a new, random configuration for the particles is chosen the energy is calculated and
whether or not the new configuration is accepted depends on the energy from the old
to the new configuration. Specifically, the algorithm is outlined as follows:

1. Generate a random configuration Z0 for both particles to be at some coordinates
that satisfies the maximum separation constraint, i.e. their distance must be ≤ d.

2. Determine the corresponding energy J0 of the system, i.e. test whether particles
are associated or not.
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Fig. 3.11 Metropolis-Monte Carlo simulations. Fitting of the model for the association probability
Pa(d) = 1/(Ad3+1) [Eq. (3.19)] of individual replisome pairs to simulation results. For simplicity
we set kB T = 1, so that A = exp(−J ). Particles move on a three dimensional grid with grid points
along a dimension indicated by the maximum separation. The association energy J increases for the
different simulation results: J = −4 (squares), J = −6 (upward triangles), J = −8 (diamonds),
J = −10 (downward triangles). The solid lines indicate the best fit of the simulation data with the
association model Eq. (3.19); their values in ascending order are: −3.6, −6.1, −8.4, −10.5

3. Choose a new, random configuration for both particles again under the constraint
that both particles can only have some maximum separation d.

4. Determine the energy J1 for this new configuration.
5. Calculate the energy difference of both configuration 	J = J0 − J1 and the

corresponding Boltzmann factor: FB = exp{ 	J
kB T }.

6. If FB > 1, the new configuration is accepted.
7. If FB < 1, the new configuration is a priori not immediately accepted.
8. Test a uniformly chosen random number w ∈ [0, 1) against FB :

(a) If w < FB accept the new configuration.
(b) If w > FB reject the new configuration, and keep the old one.

9. Chosen configuration becomes Z0. Continue the simulation and return to step 3.

We simulate the process in accordance with the rules above as well as under the
constraints of maximum separation and association energy. For simplicity we set
kB T = 1 so that FB becomes exp(	J ). We simulate for a series of parameters
ranging over J = −4,−6,−8,−10 and plot the result for the probability of particle
association in Fig. 3.11. We find that if we fit our numerical results to the equation
of particle association Eq. (3.19), we can recover the energies we had used in these
simulations. Although the fit is does not match to 100% with the assigned binding
energies, we remark that we have simplified the problem from a spherical, continuous
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Fig. 3.12 Fitting of the model for the association probability Pa(d) = 1/(Ad3 + 1) [Eq. (3.19)] of
individual replisome pairs with another. In experiments (blue circles) origin loci were tagged and
their association frequency was determined depending on their chromosomal distances d from each
other. The fitting for the single model parameter results in A = 8.7 · 106 kbp−3

one to a cubic, discrete one. This leads to slight differences in our fit to Eq. (3.19) and
the actual parameters used in our simulations. Overall our simulation confirms the
trend that we expect for the probability of particle association given by Eq. (3.19), so
that we can now use our formula for biological relevant experimental data for sister
replisome pair associations, and the investigation of their dependence on maximum
allowed separation (cf. Saner et al. [8]).

3.5 Fit to Experimental Data of Replisome Association

We fit Eq. (3.19) to the biological data of probability of replicons grouping in the
three yeast strains in order to determine the single parameter A. The function Pa(d)

fits the data well (Fig. 3.12), with the best fitting for A = 8.7 ·10−6 kbp−3 (R2 = 0.99,
Fig. 3.12). The binding energy of two sister replisome pairs is J = kB T ln(A3) =
−5.1 kB T = −12.5kJ/mol, for the best-fitting A, α = 90nm and T = 298.2K. Here
we estimate the diameter of a single sister replisome pair from the minimum size
of a replication factory of α = 90nm [7]. We again apply the chromatin packaging
ratio of 10 nm/kb to account for the actual distance between replicating dots [12].
The calculated binding energy of sister replisome pairs (−12.5kJ/mol) is in the
range of a typical weak protein–protein interaction [15, 16]. It is also in agreement
with the estimated energy for the association of DNA polymerases bound on two
replication origins [17]. So there is a relatively strong force which keeps replisomes
together in factories once they meet. The experimental data of Saner et al. [8] show
that dots randomly co-localise and stay closely together for periods of about 2min.
Their data also shows that when loci undergo replication in the same factory their
movement is more restrained than compared to those loci that do not co-localise
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Fig. 3.13 a, b In silico and in vivo (respectively) distributions of the number of active replication
forks. The experimental distribution b shows the number PCNA foci (dots) which is a unique
component of a replication fork. This number is however incomplete and requires the in silico data
so that it can be related to the number forks present in vivo. We chose to relate this number at the
peak of S-phase (red line), when most replication forks are present in the cell

during replication [8]. Between intervals of co-localisations, the loci are seen to
move rapidly before and after replication independent from their localisation during
replication (see for instance Fig.S2 in Saner et al. [8] and also Kitamura et al. [6]).
This then further suggests a strong interaction of replisomes as we calculate here.

3.6 Genome-Wide Replication Data and the Number of Forks
Per Factory

Next we establish the size distribution of replication forks that correspond to
microscope images of the distribution of PCNA foci (see Fig. 3.4 on page 53).
In experiments, cells were observed at the peak of S-phase, i.e. when most forks
are active corresponding to 40min after δ-factor release.

This data showed that the number of replication factories increased to a peak
value of 73 ± 8 (mean ± standard deviation) in mid-S-phase (Fig. 3.13b). We next
evaluated the number of replisome pairs present in each replication factory. Published
replication profiles showing the replication timing of the whole genome [9, 18] are
an average from a large number of cells and do not accurately represent replication in
individual cells. To estimate the total number of forks, we used data, which Hawkins
et al. kindly provided to us [19–21]. This fitting determined origin parameters such
as competence, mean activation time, and standard deviation of activation timing for
origins in Saccharomyces cerevisiae (unpublished data); excluding ribosomal DNA.
We applied Hawkins et al.’s data to our dynamical model which simulates stochastic
origin activation, according to these parameters, as well as fork progression at a speed
of 1.5kbp/min [18]. In simulations, origins are first selected to become licensed or
not; which is done by testing a uniform random number against the competence value
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Fig. 3.14 The number of replication forks during S-phase using a Hill- (blue circles) or Gaussian-
type (green squares) activation time distribution. We simulate the data without using a variability
of ±4min in onset of S-phase as we do in Fig. 3.13a. The data is in good qualitative agreement with
Fig. 3.13b independent of the activation type used

of each origin. Second, origins are assigned their activation times which are drawn
randomly from their activation time distribution with mean and standard deviation.
Finally, a point in time during S-phase is selected and fork progression up to then
is recorded, e.g. within an array representing a chromosome ‘0’ marks a places
with unreplicated DNA, ‘1’ represents replicated DNA. The simulation runs per
chromosome and the number of active forks results as the number of edges of regions
with ‘1’. Repeating the simulations several times produces the statistics of fork
numbers at a particular time which is plotted in Fig. 3.13a. This allows to correlate
the size distribution of replication foci which had been measured earlier (Fig. 3.4a).
Using our simulation, we estimated that 242 ± 24 (mean ± standard deviation)
replication forks were present at the peak of DNA replication (Fig. 3.13). We also
remark that using a Hill-type function for origin activation over time or some other
type such as a Gaussian origin activation time function will not change our result.
Either type shown in Fig. 3.14 is in good qualitative agreement with the experimental
distribution in Fig. 3.13b.

Using published data [22, 23], we estimated that 60 replication forkswere present,
on average, in the ribosomal DNA region. This brings the estimate to 302 forks (242
+ 60) to be found in the whole nucleus at the peak of DNA replication. In the cell
imaging data these 302 replication forks are assigned to each of the replication facto-
ries, assuming that the integrated GFP-PCNA signal in each factory is proportional
to the number of forks it contains (Fig. 3.16). We also show the distribution of the
number of forks that are found in a particle cell at 25, 30, and 35min in Fig. 3.15. It
becomes apparent that at the peak of S-phase (30min), the distribution is thinner in
comparison to some earlier or later times. In this way, we are able to estimate the in
vivo number of replisome pairs (at sister replication forks) present in each replication
factory—in particular at the experimental relevant time at the peak of S-phase.

Next, we relate our simulated fork profiles, that contain information of fork posi-
tion along the DNA at the peak of S-phase, to the in vivo replication factory dis-
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Fig. 3.15 In silico distributions of the number of active replication forks per cell at 25min (green
dotted line), 30min (blue solid line), and 35min (red dashed line). The data indicates that at the
peak of S-phase, i.e. at 30min, the distribution centres at around 242 forks per cell

Fig. 3.16 Schematic diagrams explaining how the number of replisomes (at replication forks) was
estimated at each factory. The intensity of each replication factory from the first sequence was
correlated with simulation data for the number of replication forks present at the peak of S-phase
(242 forks + 60 forks in ribosomal DNA regions) in the second sequence. This binned number of
the third sequence was binned to even integers as sister replisomes associate [6]. This represents
the number of replication forks per factory in the fourth sequence

tribution. We derived the dependence of grouping probability on fork distances
in the previous section [Eq. (3.19)] which we now apply to our in silico fork
distributions. This establishes an in silico distribution of sister replisome pairs per
replication factory in the manner depicted in Fig. 3.17. Specifically, we ran the simu-
lation in onemillion cells and took snapshots of replisome positions on chromosomes
at the peak of replication after cells had entered S-phase with 4min variation to allow
for noise in cell synchronisation during experiments. Based on these snapshots, we
determined whether adjacent sister replisome pairs were grouped in the same fac-
tory or not, depending on the chromosomal distance between themand corresponding
probability of grouping [Fig. 3.12 and Eq. (3.19)].

Let us designate each sister replisome pair along a chromosome as A, B, C, D,
…etc. in order from left to right. To determine whether A and B are grouped to the
same factory, we drew a uniformly distributed random number from (0, 1], which is
tested against the distance-dependent value Pa(d) of those two pairs. If the random
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Fig. 3.17 Pairing of replication forks into replication factories. The top panel shows the genomic
distances between active replicating units (replication forks in blue). UsingMonte-Carlo simulations
along with Eq. (3.19) one can then establish the number of active replication forks that associate
within a replication factory

(a) (b)

Fig. 3.18 In silico fork and fork distance distributions. a The computer algorithm used for pairing
neighbouring replication forks into factories is directionally independent, i.e. it does not depend
whether association starts from the left (circles) or the right (crosses) end of a chromosome. It
produces the same fork per factory distribution. b Distribution of the distance (replicated DNA is
not counted) between neighbouring sister replisome pairs along a chromosome, obtained from the
simulation. Relative fractions of the pairs at the indicated distance (each 5kbpwindow) are obtained
from one million simulations, at the peak of DNA replication (at 30min in Fig3.13)

number was below Pa(d), the pairs are assumed to be part of the same factory. Next,
we examine the association of pairs B and C in the same way. If A and B are in the
same factory and if B and C were in the same factory, then we conclude that A, B,
and C are grouped together in the same factory; if not then C has the chance to form a
factorywith D etc.We performed this pairwise clustering of adjacent sister replisome
pairs into factories in the rightward direction along each chromosome. Nonetheless,
we also confirmed that clustering in the left direction gave a very similar result
(Fig. 3.18).

In this study, we assume that sister replisomes are always associated with each
other during replication of a relevant replicon. This assumption was based on
Kitamura et al. [6] previous results that sister replisomes were associated in vivo



68 3 Actively Replicating Domains Randomly Associate into Replication Factories

(a) (b)

(c) (d)

Fig. 3.19 Factory grouping for an example of three neighbouring replisomepairs.We consider three
directly adjacent replisome pairs. They are initially isolated (a). Some other possible configurations
are the immediate neighbours association (b) and (c), or the association of the farthest neighbours
(d). We show in the main text that this configuration has a small likelihood

in most of the cells. We also assume that, when two replisome pairs encounter one
another (head-on-head fork collision and coalescence), one sister replisome in each
pair disappears, leaving the remaining two replisomes associated. This mechanism
allows the new pair to undergo further replication. This assumption is consistent
with a low energy state of associated replisome pairs; i.e., once two pairs become
associated, we can expect that they stay associated for some time (see also diffusion
time scales in Sect. 3.2, page 53). Nonetheless, in the above mathematical simula-
tion, we observe also a low number of cases where one replisome is present without
its sister, producing an odd number of forks per factory (Fig. 3.18a). This happens
when one replisome has completed replication at the end of a chromosome (which is
linear) while its sister is still engaged in replication. This led to generation of a small
number of replication factories containing odd numbers of replisomes (Fig. 3.18a).
However, for a direct comparison of the distribution of sister replisome pairs in fac-
tories obtained from in vivo and in silico data, we partitioned factories with odd
numbers of forks (replisomes) proportionally to the nearby categories with even
numbers of forks. For example factories with three forks were recategorised to those
with two and four forks proportionally to their factory numbers.

In the above mathematical modeling, we assume that replisome pairs A and C
only associate when both A/B and B/C associate. In other words, we consider asso-
ciation between immediate neighbours but not between others. It is actually difficult
to consider direct association between A and C because we would need to consider
all possible permutations: the presence and absence of A/C (Fig. 3.19d) association
separately depending on whether A/B (Fig. 3.19b) and B/C (Fig. 3.19c) association
is present or not. Doing this for genome-wide simulations is impractical. Nonethe-
less, our assumption—direct pairwise association only—is justified only when A/C
(second neighbour) association is relatively low compared with A/B and B/C (direct
neighbour) association. We test this in a simplified case of equal chromosomal dis-
tances d between A and B and between B and C. The ratio of the A/C association
probability to the A/B and B/C association probability is η = Pa(2d)/(2Pa(2d)).
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Fig. 3.20 Genome-wide association probabilities of forks per factories. Simulations are shown as
green squares and in vivo observation are shown as red circles. There is an offset at the origin in the
experimental data. This is an artifact of noise in the experimental technique. Depicted are also the
number of sister replisome pairs (ovals), replicated (yellow) as well as unreplicated DNA (black)
and the origin of replication (small white circles)

Considering the median chromosomal distances between two neighbouring repli-
some pairs (Fig. 3.18b) d = 36kbp and A = 8.7 · 10−6 kbp−3 equates to η = 0.17.
From first principles, η = 0.17 is not negligible however taken into account the
accuracy of the experimental procedure we estimate this to be of similar magnitude,
and also an association of A/B and B/C is about six times more likely than A/C. In
the initial experimental setting of observing two dots it is for instance not possible
to distinguish when A/C are seen associated whether this is in a configuration of
A/C, A/B/C. So there is also an intrinsic error introduced in the measurement when
reporting A/C association.

In this way, we are able to compare in vivo and in silico estimates of the number
of replisome pairs in each replication factory as shown in Fig. 3.20. Simulations and
microscopy observation are very similar. Thus, from the frequency that adjacent sister
replisome pairs associate with one another we are able to accurately recapitulate the
genome-wide distribution in replication factories by assuming stochastic assembly of
replicons. Our result shows that it ismainly neighbouring replicons on a chromosome
that are brought together in factories; the association of replicons is random. The
result further suggests that factory organisation is intra-chromosomal (replicons on
the same chromosome), albeit other factors constituting to inter-chromosomal factory
formation for a minor part of the population of factories.

In Fig. 3.21, we also compare the experimentally obtained distribution with in sil-
ico experiments at some time before (25min) and after (35min) the peak of S-phase
(30min). The tail of the distribution for large factories still matches the experimental
well, however diverges for the data point when two sister replisome pairs associate,
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Fig. 3.21 Genome-wide association of sister replisomepairs per factories at different times in silico.
Simulations are shown as an average of 10,000 in silico cells. This is done by taking snapshots
at different times for each of the 10,000 individual simulations: t = 25min (green diamonds),
t = 30min (blue squares), t = 35min (red circles). The grey line shows the trend of the experimental
from the count of two sister replisome pairs per cell (as seen in Fig. 3.20). For an actual comparison
of the different settings we here show the actual count of factories rather than the relative fraction
as is done in Fig. 3.20
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Fig. 3.22 In silico fork distribution of the distance (replicated DNA is not counted) between
neighbouring sister replisome pairs along chromosomes. The count of the pairs at the indicated
distance (each 5kbp window) are obtained at t =25min (green dotted line), t = 30min (blue solid
line) at the peak of DNA replication (cf. Fig3.13), and at t =35min (red broken line). This was
done for 10,000 simulation runs for each time point
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Fig. 3.23 The distribution
of in vivo sister replisomes
per replication factory (red
circles) approximately fits
a Poisson distribution with
λ = 1.60 R2 = 0.98 (blue
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i.e. one pair of those. Along with Fig. 3.15 as well as with Fig. 3.22 the data indicates
that the immediate neighbour interactions lead to their increase or decrease over the
course of replication. Its consequence is then felt mostly in the number of two sister
replisome pairs because their formation is driven by forks are either being further
or closer away from a neighbouring one. This is in agreement with recent data pub-
lished by Cisse et al. [24] who showed that replication factories constantly become
assembled and disassembled over time course of S-phase rather than displaying a
completely fixed entity within the cellular nucleus. We propose that it is a natural
consequence of fork coalescence events (decreasing the number of two sister repli-
some pairs), or for example the nucleation nearby some other fork which then leads
to the formation of factories of size two. A further point of consideration is that in
a factory containing many sister replisome the energy required to break it up into
to single individual sister replisomes has to be rather large; although this has to be
tested in a different kind of simulation that studies their dynamics over the entire
course of S-phase at an individual cell level instead as we did here where we took
an equilibrium assumption for our model. Constant assembly and disassembly also
occurs for other structures, e.g. the growth of filamentous structures inside cells, the
formation of centromeres, and thus is of particular interest to further understanding
of physical mechanisms that lead and control cellular functions.

In summary, our result is in line with the current biological model [11, 25] and it
is consistent with observed clustering of active replicons on DNA fibre [26] as well
as a high rate of association of neighbouring DNA sequences observed in chromo-
some conformation capture assays [27].We also supplement this random association
hypothesis showing a fit of zero-truncated Poisson distribution, i.e. a Poisson distri-
bution under the assumption that there is no observation for a count of k = 0 forks
per factory. The probability distribution is then given by

P(Z = k|X > 0) = P(X = k)

P(X > 0)
= λke−λ

k!(1 − e−λ)
, (3.20)

with λ = 1.60 as a result of a least-squares fit with the in vivo distribution and
Eq.3.20 (Fig. 3.23).
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3.7 Summary

We have shown that replisomes associate randomly with each other using an
adiabatic assumption for our model, and we verify our analytical results numerically
using Metropolis-Monte-Carlo stimulations. A stochastic assembly mechanism may
provide robustness to factory organisation. It is relatively easy to establish—all that
is required is that some replisome components have an affinity for another repli-
some component. In a deterministic assembly scheme, failure to incorporate one
component might cause failure of the entire factory network, whereas in a stochas-
tic scheme, each individual interaction is independent of the status of the others.
This has particular importance for example in human and animal cells responding
to replication stress when a replication factory defines the boundary, inside of which
dormant origins can initiate and complete replication for the region between two
stalled replication forks [28, 29].

In addition to organising DNA replication, replication factories (foci) are likely
to represent a fundamental feature of chromosome organisation [11, 30]. Using Sac-
charomyces cerevisiae as a model organism for our mathematical modelling, we find
that individual replication factories creating replicons are highly variable from cell
to cell. Their group size also depends on a particular of the cell size as distances from
one replisome to another constantly changes and fork movement bringing replisome
pairs closer into contact, hence promoting the formation of replication factories. Our
results show adjacent replicons assemble stochastically and stay associated together
to maintain replication factories in a stable manner. Their formation is also essential
to then build up replication factories containing a larger number of sister replisome
pairs. Our study elucidates the importance of not only organisation of DNA repli-
cation within the nucleus, but also to general mechanisms by which chromosomes
organise sub-nuclear structures such as transcription factories and repair foci [31,
32]. Their further investigation is required, especially in light of new experimental
data which shows that transcription factories are very dynamic structures which con-
stantly assemble and disassemble inside a cluster with a typical life time of 5 s [24];
rather than sticking together for long times (>2min) as is the case of replication
factories here.
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Chapter 4
Summary and Conclusions

Life is only possible because the genomic information in a cell’s chromosomes is
copied from one generation to the next, by means of DNA replication. Components
of the complex biological machinery responsible for replication in eukaryotes act
in concert to ensure that replication takes place rapidly and accurately, at the right
time within the cell cycle, and crucially that every piece of the chromosome is
replicated once and only once per round of the cell cycle. The two key elements of this
process—establishing the starting points for replication (origins) and the activation
of replication forks at those origins—are stochastic events which occur during two
distinct phases of the cell cycle. From each origin, replication forks propagate from
either side, synthesising DNA at an apparently fixed speed. Hence, the time required
to replicate the DNA content of a cell is dictated by the distances between origins.

The work presented here examined theoretically, and in close collaboration with
experimentalists, how replication can be brief and on time as is the case in nature, how
robust timing is possible under fluctuating and noisy conditions, and how replication
forks organise spatially within the cell.

In brief, we developed a timing–model of DNA replication which has identified
optimal origin positions induced depending on failure probabilities and evolutionary
pressure. The emergence of such optimal positions is still to be investigated, however
previous experimental results in Xenopus laevis suggest that this could be achieved
as an effect of limitting space on DNA due to pMcm binding. We also introduced a
general theory for active forks in this work which shows that their random assembly
leads to higher–order structures or replication factories, and for the first time theory
accurately predicts factory size distributions from genome–wide yeast data in silico
which agree with quantitative in vivo experiments.

In detail, the work here described those aspects as follows.

1. The balancing act to spread out origins in a certain manner to compensate for
variations in activation timing and lack of proteins stochastically binding to
sequences.We showed both analytically and through numerical simulations (sim-
ilar to a 1D nucleation and growth process) that there exists two regimes for
origins, either positioned together in groups spaced far away from the next, or
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as equally–scattered single origins depending on the uncertainty when activation
occurs. We applied the model to known origin locations in yeast and showed that
grouping is a means of organisation driven by evolutionary pressure. The model
is able to reproduce origin distributions of Xenopus which are thought to be ran-
dom, and showed contrarily that groupingmust occur in order to swiftly complete
replication. The model also holds when considering a circular DNA topology as
for instance archaeal genomes have, as well as if applied to the whole replication
profiling data of yeast.

2. The second topic aimed at the organisation of replication forks within the cellular
nucleus. For simplicity, cartoons often depict DNA replication on a straight one–
dimensional line. In fact we deal with a polymer that is packed and modified
on different levels yielding higher order structures of organisation. A project in
experimental collaboration focussed on the aspect of spatial organisation of active
replication forks during the time–course of replication. These forks are observed
to organise in clusters of replication factorieswhichwe investigated by describing
the process with a particles on a string model. We calculated analytically the
probability for forks to meet using Boltzmann–statistics. The model was then
used to describe properties of measured experimental distributions such as fork
numbers per cluster during the DNA synthesis phase. Analysis was extended
to the whole yeast–genome which yielded a near–perfect match with the data
suggesting that actively replicating units of DNA randomly associate with each
other to form replication factories.

Particular emphasis on the stochastic processes that work here at different scales
allowed us to describe key aspects of replication. The models developed here allow
for further extensions to describe DNA replication at various scales of organisa-
tion; e.g. at the DNA sequence level, an investigation of origin positioning under
perturbing conditions, i.e. epigenetic factors that forbid binding to a chromosomal
region, and the effect on replication completion times. At larger scales, formation of
these origins is linked to fluctuating levels of proteins, e.g. during embryogenesis or
under starvation conditions. More importantly at tissue–level, a treatment of noise
in these processes combined with a modelling of replication fork movement could
then provide a comprehensive model for tissue homeostasis.

Ultimately, we expect the outcome of such studies to also provide understanding
of stochasticity in protein synthesis and usage of cellular resources. The theoreti-
cal investigation and new modelling tools can be integrated with experiments. In
the long–term view, extensions to the work presented here has potential to address
challenges in cancer therapy. For example, a model could be used alongside data to
predict critical shifts in the replication pattern that trigger cancer or how to achieve
optimal cellular growth conditions. This must be tested using a holistic model incor-
porating the physical process involved in replication licensing, origin activation. Such
a model is then testable against experimental replication timing profiles and yields
insight into organisation of DNA replication at a single cell level.
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